Потенциометрический метод определения рН

В настоящее время наиболее распространен потенциометрический метод определения рН, поскольку он является наиболее точным и быстрым. Метод основан на измерении ЭДС гальванической цепи, составленной из электрода, обладающего водородной функцией, и электрода сравнения. Существует ряд электродов, обладающих водородной функцией (водородный, хингидронный, стеклянный), но в настоящее время в лабораторной практике широко применяется стеклянный электрод с водородной функцией, т.к. он обладает рядом преимуществ. Например, одним из преимуществ стеклянного электрода является то, что он позволяет определять рН раствора любого химического соединения в достаточно широком диапазоне значений.

Схематически стеклянный электрод, обладающий водородной функцией, записывается следующим образом:

Ag | AgCl, 0,1н HCl | | .

Для измерения рН раствора составляют цепь из стеклянного и хлорсеребряного электродов. Хлорсеребряный электрод является электродом сравнения. Таким образом, стеклянно-хлорсеребряная цепь записывается так:

Ag | AgCl, 0,1н НСl | | |KClнасыщ, AgCl| Ag.

Величина потенциала стеклянного электрода (eст) связана с концентрацией Н+- ионов исследуемого раствора уравнением Нернста:

или

eН+ст. = e°Н+ст. + 0,0579 lgаН+

где: e0ст – потенциал асимметрии стеклянного электрода, величина переменная (в отличие от металлов) и поэтому требующая корректировки по буферным растворам.

Расчет рН растворов при использовании стеклянно-хлорсеребряной цепи потенциометрическим методом заключается в следующем. ЭДС любой гальванической цепи равна разности электродных потенциалов:

Е = eН+ст. - eхл.

подставим в данное уравнение значение электродного потенциала стеклянного электрода:

Е = e°Н+ст. + 0.0579 lgаН+ - eхл.

решим данное уравнение относительно рН:

-0.0579 lgаН+ = e°Н+ст. - eхл. – Е

а т.к. -lgаН+ = рН , то

рН = e°Н+ст. - eхл. – Е / 0,0579

Биологическое значение.

Каждый ион играет особую роль в биологических и химических процессах, однако, водородные ионы занимают особое положение среди всех других ионов. Так, активность ферментов, при помощи которых осуществляется синтез и разложение химических веществ в живой клетке, состоит в непосредственной зависимости от концентрации ионов водорода. Каждый фермент имеет определенную величину рН, оптимальную для его действия, например:

Таблица 4

Оптимальные рН сред для действия некоторых ферментов

Название ферментов Оптимум рН
Диастаза солоды 4.9
Сахароза дрожжей 4.5
Сахароза животных 6.0-8.0
Лактаза 7.0
Липаза желудочного сока 4.0-5.0
Каталаза крови 7.0
Пепсин при действии на яичный альбумин 1.2-1.6
Трипсин при действии на казеин 6.0-6.5

 

Концентрация ионов водорода имеет большое значение в жизнедеятельности микроорганизмов. Установлено, например, что дифтерийный микроб лучше развивается при рН в пределах 7,3-7,6, микроб кишечной палочки при рН = 6-7.

В прямой зависимости от рН находится деятельность почвенных микроорганизмов. Например, активная фиксация азота микробами наблюдается при рН =7,2.

Отношение высших растений к рН почвы также различно. Так, например, овес, репа, картофель, рожь дают наивысшие урожаи при рН около 5; пшеница, ячмень, свекла, люцерна лучше развиваются при нейтральной реакции почвы или даже слабо щелочной.

По видовому составу луговой растительности можно определить рН почвы – присутствие растения «щучки» (Deschampsia flexuosa) указывает на рН почвы – 3,5-3,9; преобладание осоки (Carex) на рН в пределах 4,5-4,9; преобладание «мать-мачехи» (Tussilfgo farfara) на рН 7,5-7,9 и т.д.

Концентрация ионов водорода имеет большое значение для развития растений. Давно известно, что на кислых почвах многие растения развиваются слабо. Агрономы применяют известкование с целью повышения плодородия почв. Концентрация водородных ионов почв оказывает влияние не только на процессы жизнедеятельности растений, но и на распределение и активность микроорганизмов, населяющих почву, и даже на физико-химическое состояние почвенных коллоидов.

Искусственно изменяя рН среды, например, внесением в почву извести или суперфосфата, мы можем регулировать и изменять бактериальное население почвы, способствовать ее нитрификации и т.д.

рН водной среды является мощным фактором, влияющим на распространение водных организмов. Наиболее благоприятной для жизнедеятельности организмов водной средой является нейтральная или слабощелочная. Реакция воды в пресных водоемах и морях зависит от целого ряда факторов, но все они сводятся к буферному действию. Буферами в море и реках являются угольная кислота, бикарбонаты и карбонаты. рН поверхностных слоев морей и океанов поэтому колеблется незначительно, в пределах 8,1-8,3

В природе есть ряд стоячих водоемов, отличающихся ярко выраженной кислой реакцией. Это – сфагновые болота и озера. Интенсивные процессы гниения, происходящие там, обилие гуминовых веществ, создают среду с рН ниже 5,0, здесь накапливаются минеральные кислоты, например, такая сильная как серная.

Различные водные организмы обладают неодинаковой выносливостью к тем или иным колебаниям рН среды. Например, главная масса пресноводных организмов – инфузории, коловратки, планарии, ракообразные и т.д. выдерживают только нейтрально-щелочные воды в диапозоне рН от 5 до 10. К этой группе организмов следует отнести и все морские организмы.

Функциональная деятельность отдельных органов и тканей высших животных также находится в зависимости от концентрации водородных ионов. Так, у лягушки, при изменении рН крови от 7,5 до 6,5 происходит резкое ослабление сердечной деятельности, а при рН = 6 сердце перестает работать. Изменение рН крови выше 7,3 вызывает сужение сосудов, а ниже – расширение сосудов. При изменении рН в кислую сторону перистальтика кишечника усиливается. Резко реагирует на изменение рН нервная система. Изменения концентрации ионов водорода могут происходить при различных заболеваниях, причем рН крови может смещаться в кислую – ацидоз или в щелочную среду – алкалоз.

рН крови высших животных и человека поддерживается мощными буферными системами – такими как гем-гемоглобин, оксигемоглобин, белковыми, бикарбонатными. Ниже приводятся показатели концентрации водородных ионов крови, соков и жидкостей организма (таблица 5).

Под влиянием водородных ионов изменяются основные физико-химические свойства веществ и растворов: растворимость, фильтрация, диализ, поверхностное натяжение, вязкость, устойчивость, осмотическое давление, набухание и т.д. Вот почему определение концентрации водородных ионов нашло применение во всех областях химии, биологии, физиологии, бактериологии, медицины, сельского хозяйства и техники.

объект исследования рН Объект исследования рН
Кровь животных: бык кролик Собака (сыворотка крови) Лошадь Свинья Баран (сыворотка крови) Коза (сыворотка крови) Овца   7.36-7.40 7.33-7.35 7.30 7.40-7.60 7.85-7.95 7.82 7.65 7.40-7.58 6.02   Мышечный сок Слюна лошади Слюна коровы Желудочный сок собаки Желчь Молоко коровы Моча коровы Моча лошади Пот лошади Содержание тонких кишок кур   7.56 8.10 0.96-080 7.0-8.0 6.2 8.5-8.7 7.4-8.7 7.8-8.9   5.5-6.3  

Таблица 5

Вопросы для самоконтрля:

1. Ионное произведение воды. Водородный показатель ( рН ).

2. Понятие о рН, как показателе реакции среды.

3. Роль концентрации водородных ионов в биологических процессах. Кислотность и щелочность почв.

4. Буферные растворы, их состав.

5. Свойства буферных растворов. Их биологическое значение.

6. Основное уравнение буферных растворов.

7. Буферная емкость, ее определение. Буферность почв и почвенного раствора.

8. Потенциометрический метод определения рН.

Экспериментальная часть:

Задание 1. Приготовление буферных растворов и почвенной вытяжки

1. Ацетатный буферный раствор

Приготовить 50 мл буферного раствора сливанием 0,1М CH3COOH и 0,1М CH3COONa при соотношении 1 : 1 (25 мл кислоты + 25 мл соли).

рН этого раствора равен 4,65.

2. Фосфатный буферный раствор

Приготовить 50 мл буферного раствора сливанием 1/15 М KH2PO4 и 1/15 М Na2HPO4 при соотношении объемов 1 : 1.

рН этого буферного раствора равен 6,81.

Буферные растворы хорошо перемешать.

3. ПРИГОТОВЛЕНИЕ ВОДНОЙ ПОЧВЕННОЙ ВЫТЯЖКИ. Отвешивают на лабораторных весах навеску почвы 10 г и переносят в колбу емкостью 100 мл. В эту колбу с помощью цилиндра добавляют 50 мл дистиллированной воды. Содержимое колбы перемешивают вручную и оставляют до конца занятия. Отстоявшийся раствор сливают в стаканчик и определяют рН.

В конце занятия измеряют рН дистиллированной воды, используемой для приготовления почвенной вытяжки. Оба результата заносят в таблицу 9.

Задание 2. Подготовка прибора к работе, настройка и измерение рН

Для измерения рН используется анализатор жидкости многопараметрический «ЭКОТЕСТ – 2000» (ионометр). Предел допускаемой погрешности иономера при измерении рН по образцовым буферным растворам составляет ± 0,02 рН.