Из истории теории относительности

Предпосылкой к созданию теории относительности явилось развитие в XIX веке электродинамики. Результатом обобщения и теоретического осмысления экспериментальных фактов и закономерностей в областях электричества и магнетизма стали уравнения Максвелла, описывающие эволюцию электромагнитного поля и его взаимодействие с зарядами и токами. В электродинамике Максвелла скорость распространения электромагнитных волн в вакууме не зависит от скоростей движения как источника этих волн, так и наблюдателя, и равна скорости света. Таким образом, уравнения Максвелла оказались неинвариантными относительно преобразований Галилея, что противоречило классической механике.

 

Специальная теория относительности была разработана в начале XX века усилиями Г. А. Лоренца, А. Пуанкаре, А. Эйнштейна и других учёных. Экспериментальной основой для создания СТО послужил опыт Майкельсона. Его результаты оказались неожиданными для классической физики своего времени: независимость скорости света от направления (изотропность) и орбитального движения Земли вокруг Солнца. Попытка интерпретировать этот результат в начале XX века вылилась в пересмотр классических представлений, и привела к созданию специальной теории относительности.

 

А. Эйнштейн Лоренц Г.А.

 

При движении с околосветовыми скоростями видоизменяются законы динамики. Второй закон Ньютона, связывающий силу и ускорение, должен быть модифицирован при скоростях тел, близких к скорости света. Кроме этого, выражение для импульса и кинетической энергии тела имеет более сложную зависимость от скорости, чем в нерелятивистском случае. (слайд 5)

 

Специальная теория относительности получила многочисленные подтверждения на опыте и является верной теорией в своей области применимости.

Фундаментальность специальной теории относительности для физических теорий, построенных на её основе, привела в настоящее время к тому, что сам термин «специальная теория относительности» практически не используется в современных научных статьях, обычно говорят лишь о релятивистской инвариантности отдельной теории.

 

Основные понятия СТО.

Специальная теория относительности, как и любая другая физическая теория, может быть сформулирована на базе из основных понятий и постулатов (аксиом) плюс правила соответствия её физическим объектам.

 

Система отсчёта представляет собой некоторое материальное тело, выбираемое в качестве начала этой системы, способ определения положения объектов относительно начала системы отсчёта и способ измерения времени. Обычно различают системы отсчёта и системы координат. Добавление процедуры измерения времени к системе координат «превращает» её в систему отсчёта.

 

Инерциальная система отсчёта (ИСО) — это такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно.

 

Событием называется любой физический процесс, который может быть локализован в пространстве, и имеющий при этом очень малую длительность. Другими словами, событие полностью характеризуется координатами (x, y, z) и моментом времени t.

 

Примерами событий являются: вспышка света, положение материальной точки в данный момент времени и т. п.

Обычно рассматриваются две инерциальные системы S и S'. Время и координаты некоторого события, измеренные относительно системы S обозначаются как (t, x, y, z), а координаты и время этого же события, измеренные относительно системы S', как (t', x', y', z'). Удобно считать, что координатные оси систем параллельны друг другу и система S' движется вдоль оси x системы S со скоростью v. Одной из задач СТО является поиск соотношений, связывающих (t', x', y', z') и (t, x, y, z), которые называются преобразованиями Лоренца.

 

Обычно рассматриваются две инерциальные системы S и S'. Время и координаты некоторого события, измеренные относительно системы S обозначаются как (t, x, y, z), а координаты и время этого же события, измеренные относительно системы S', как (t', x', y', z'). Удобно считать, что координатные оси систем параллельны друг другу и система S' движется вдоль оси x системы S со скоростью v. Одной из задач СТО является поиск соотношений, связывающих (t', x', y', z') и (t, x, y, z), которые называются преобразованиями Лоренца. (слайд 7)

 

Постулат относительности

Все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой (протекают одинаково во всех инерциальных системах отсчета).

Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы природы, в том числе и на электромагнитные. Этот обобщенный принцип называют принципом относительности Эйнштейна. (слайд 8)

 

Постулат относительности

Скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.

 

Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую.

 

Следствия из теории, созданной на основе этих принципов, подтверждались бесконечными опытными проверками. СТО позволила разрешить все проблемы «доэйнштейновской» физики и объяснить «противоречивые» результаты известных к тому времени экспериментов в области электродинамики и оптики. В последующее время СТО была подкреплена экспериментальными данными, полученными при изучении движения быстрых частиц в ускорителях, атомных процессов, ядерных реакций и т. п.

 

Пример

Постулаты СТО находятся в явном противоречии с классическими представлениями. Рассмотрим такой мысленный эксперимент: в момент времени t = 0, когда координатные оси двух инерциальных систем K и K' совпадают, в общем начале координат произошла кратковременная вспышка света. За время t системы сместятся относительно друг друга на расстояние υt, а сферический волновой фронт в каждой системе будет иметь радиус ct, так как системы равноправны и в каждой из них скорость света равна c. С точки зрения наблюдателя в системе K центр сферы находится в точке O, а с точки зрения наблюдателя в системе K' он будет находиться в точке O'. Следовательно, центр сферического фронта одновременно находится в двух разных точках!

 

Объяснение противоречий

 

Причина возникающего недоразумения лежит не в противоречии между двумя принципами СТО, а в допущении, что положение фронтов сферических волн для обеих систем относится к одному и тому же моменту времени. Это допущение заключено в формулах преобразования Галилея, согласно которым время в обеих системах течет одинаково: t = t'. Следовательно, постулаты Эйнштейна находятся в противоречии не друг с другом, а с формулами преобразования Галилея. Поэтому на смену галилеевых преобразований СТО предложила другие формулы преобразования при переходе из одной инерциальной системы в другую – так называемые преобразования Лоренца, которые при скоростях движения, близких к скорости света, позволяют объяснить все релятивисткие эффекты, а при малых скоростях (υ << c) переходят в формулы преобразования Галилея. Таким образом, новая теория (СТО) не отвергла старую классическую механику Ньютона, а только уточнила пределы ее применимости. Такая взаимосвязь между старой и новой, более общей теорией, включающей старую теорию как предельный случай, носит название принципа соответствия.

Это интересно!

1. В начале научной карьеры Эйнштейна один журналист спросил госпожу Эйнштейн, что она думает о своем муже.

- Мой муж – гений! - сказала госпожа Эйнштейн. – Он умеет делать абсолютно все, кроме денег.

2. – Как Вы записываете свои великие мысли? – спросил журналист. – У Вас есть для этого блокнот или записная книжка?

Эйнштейн посмотрел на журналиста, стоявшего перед ним с записной книжкой, и сказал: - Милый мой… Настоящие мысли приходят в голову так редко, что их нетрудно и запомнить.

3. Альберт Эйнштейн любил фильмы Чарли Чаплина и относился с большой симпатией к созданному им герою. Однажды он написал в письме к Чаплину: «Ваш фильм «Золотая лихорадка» понятен всем в мире, и вы непременно станете великим человеком. Эйнштейн.» На это Чаплин ответил: «Я восхищаюсь Вами еще больше. Вашу теорию относительности никто в мире не понимает, а Вы все-таки стали великим человеком. Чаплин».

Вопрос: Назовите факторы, которые повлияли на формирование мировоззрения?

- Любовь к скрипичной музыке А. Моцарта, И. Баха. Научился играть на скрипке в 6 лет. Музыка помогала вызывать симпатию и сходиться с людьми. Однажды в Праге он должен был читать доклад, но вместо этого, к необычайной радости толпы, стал… играть на скрипке.

 

В возрасте четырех лет Эйнштейн пережил настоящее чудо, когда отец показал ему компас. То, как вела себя его стрелка, не вписывалось в событийный ряд, в неосознанной форме являвший себя в мир понятий.

Знакомство с евклидовой геометрией на плоскости. Книга по евклидовой геометрии запомнилась ясностью суждений и непреложностью доказательств. Эйнштейн писал: « Когда я спрашиваю себя, чем можно объяснить то, что именно я открыл теорию относительности, я думаю, что все дело заключается в следующем: нормальный взрослый человек не ставит перед собой проблему осмысления пространства и времени. Все, что, по его мнению, можно думать об этом, он пережил уже в детстве. Я же, напротив, развивался настолько медленно, что начал думать о пространстве и времени и изумляться этому, когда уже был взрослым человеком. Естественно, что я смог поникнуть в эту проблему глубже, чем обычный ребенок.

Влияние семьи и друзей (его дядя и отец были владельцами электротехнической фабрики), тяга к самообразованию, талант вкупе с изобретательностью и упорством. Наконец, просто удача.

Но были и научные предпосылки возникновения теории относительности. Как известно, Альберт Эйнштейн работал в патентном бюро в Берне, туда регулярно поступали заявки на изобретения в области пространства-времени. Фактически, Эйнштейн буквально держал руку на пульсе своего времени. В конце 19 века был поставлен знаменитый опыт по обнаружению «эфирного ветра» американскими учеными Альбертом Майкельсоном и Эдвардом Морли в Кливленде, в подвале лаборатории. Прибор был установлен на квадратной каменной плите, плавающей в жидкой ртути. Система зеркал направляла пучок света в определенном направлении, зеркала отражали пучок туда и обратно по одному направлению так, что он делал 8 пробегов. В то же время другая система зеркал посылала пучок в перпендикулярном направлении. Прибор медленно поворачивали и рассматривали интерференционные картины , образованные двумя потоками световых пучков. Ученые были поражены и разочарованы, интерференционные полосы не изменяли своего вида, следовательно, скорости световых пучков не зависели от эфирного ветра, а самого эфирного ветра (а значит и эфира) нет!

Домашнее задание:

1. Е.В. Коршак, А.И. Ляшенко, В.Ф. Савченко. Физика. 10 класс, «Генеза», 2010. Повторить §36 (с.124-126).

2. Учить лекционный материал.

 



lude $_SERVER["DOCUMENT_ROOT"]."/cgi-bin/footer.php"; ?>