Идеальные кристаллы. Решетки Бравэ

 

Выше были описаны условия образования равновесной кристаллической решетки. Она представляет собой модель кристалла, описывающую расположение атомов (ионов, молекул) в пространстве. Различают решетки Бравэ и решетки с базисом. В кристаллографии используют и другие системы классификации кристаллов [4].

В этом разделе мы будем рассматривать идеальные кристаллы – совершенные структуры, обладающие строгой периодичностью расположения атомов. Уже само название говорит о том, что таких кристаллов в природе нет, есть более или менее совершенные структуры, однако, понятие «идеальный кристалл» позволяет более наглядно представить структуры реальные. Решетки Бравэ, или трансляционные решетки, создаются с помощью операции параллельного перемещения (трансляции) частиц (атомов, ионов). Вектор трансляции , где m, n, q – целые числа. В кристаллографии для аналитического описания кристалла используют трехмерную систему координат, которую выбирают в соответствии с симметрией кристалла. Декартова система в этом случае неудобна, поскольку она прямоугольна и имеет равномасштабные оси координат. Такая система не позволяет достаточно полно и наглядно отразить основные свойства кристаллов, их симметрию и анизотропию. Оси кристаллографической системы координат, как правило, совпадают с векторами, на которых построена элементарная ячейка (рис. 1.2). Под элементарной ячейкой понимают минимальный объем кристалла, который еще сохраняет его структуру.

 

Рис. 1.2. Элементарная ячейка: , α, β, γ – параметры ячейки кристалла

Все элементарные ячейки кристалла имеют одинаковую структуру и объем. Во всех вершинах ячеек располагаются атомы или группы атомов. Их называют узлами решетки. В зависимости от соотношения параметров ячейки различают семь типов симметрий, или сингоний Бравэ (табл. 1.1).

 

Таблица 1.1

Решетки Бравэ

Сингония Параметры ячейки Возможная структура ячейки
углы ребра
триклинная αβс≠90º abc ПР
моноклинная α=γ=90º, β≠90º abc ПР, БЦ
ромбическая α=β=γ=90º abc ПР, БЦ, ГЦ, ОЦ
тетрагональная α=β=γ=90º a=bc ПР, ОЦ
тригональная (ромбоэдрическая) α=β=γ≠90º a=b=c ПР
гексагональная α=β=90º, γ=120º a=bc ПР
кубическая α=β=γ=90º a=b=c ПР, ОЦ, ГЦ

 

Различают четыре типа структуры элементарных ячеек. Примитивная ячейка (ПР) содержит частицы только в вершинах. С учетом соседних ячеек, на такую ячейку приходится один атом.

Базоцентрированная (БЦ) ячейка кроме частиц в узлах имеет частицы в центрах верхней и нижней граней.

Если добавить частицы в центры остальных граней, получим гранецентрированную (ГЦ) элементарную ячейку с четырьмя частицами.

Объемноцентрированная (ОЦ) ячейка отличается от примитивной тем, что содержит в центре еще одну частицу.

Очевидно, что существует 14 различных решеток Браве (четвертый столбец таблицы). Можно строго доказать, что это действительно так.

Однако существуют кристаллические решетки, структура которых не совпадает ни с одной из решеток Браве. Такую решетку можно представить в виде двух вставленных друг в друга решеток Бравэ, их расстояние друг относительно друга описывается дополнительным вектором а, называемым базисным.

Такую решетку называют решеткой с базисом. Ее можно построить с помощью тех же трансляций, что и каждую из составляющих решеток Бравэ, но при этом нужно транслировать не один, а несколько узлов – базис. Например, решетку типа алмаза можно образовать двумя вставленными друг в друга ГЦК решетками, смещенными на ¼ диагонали ячейки.

Представим себе трехмерную кристаллическую структуру любой сингонии. Перемещаясь по тесной структуре в различных направлениях, мы на единицу длины встретим различное число частиц, т. е. «линейная плотность» кристалла зависит от направления. Очевидно, это одна из причин анизотропии свойств кристалла. Следовательно, в кристалл необходимо ввести некие правила ориентации. Такими «координатами» являются индексы Миллера для узлов, направлений и плоскостей.

Индексы узлов. Положение любого узла кристаллической решетки относительно выбранного начала координат определяется заданием трех координат (рис. 1.3, а) – x, y, z, которые можно выразить так:

 

x = ma, y = nb, z = qc,

где a, b, c – параметры решетки,

m, n, q, целые числа.

Если за единицы измерения длины принять параметры решетки, то координатами узла будут числа m, n, q. Они называются индексами Миллера для узла и записываются в двойных квадратных скобках – [[m n q]].

Индексы направлений. Для описания направления в кристалле выбирается вектор, проходящий через начало координат и через первый на его пути узел [[m n q]]. Поэтому индексы этого узла определяют индексы направлений – [m n q] (рис. 1.3, б).

б)
в)
а)

а) б) в)

Рис. 1.3. Индексы Миллера: a – индексы узлов; б – индексы направлений;

в – индексы плоскостей

 

Индексы плоскостей. Для нахождения индексов плоскости можно определить отрезки, отсекаемые ее на осях координат M, N, Q. Затем находят обратные величины 1/m, 1/n, 1/q и полученные дроби приводят к общему знаменателю D, m = D/M, n = D/N, q = D/Q. Полученные целые числа и есть индексы плоскостей (m, n, q).

Можно найти индексы плоскостей и другим способом, учитывая, что плоскость и перпендикулярное ее направление имеют одинаковые индексы (рис. 1.3, б, в).