Схема независимых испытаний Бернулли

Полиноминальное распределение.

 

Предположим, что в результате испытания возможны два исхода: «У» и «Н», которые мы называем успехом и неудачей.

, , p+q=1.

Предположим, что мы производим независимо друг от друга n таких испытаний.

o Последовательность n испытаний называется испытаниями Бернулли, если эти испытания независимы, а в каждом из них возможны два исхода, причем вероятности этих исходов не меняются от испытания к испытанию.

Элементарным исходом будет являться:

(w1,w2,…,wn), .

Всего таких исходов 2n.

. (1)

Формула (1) показывает, что события независимы.

Обозначим через µ число успехов в n испытаниях Бернулли. — вероятность того, что в n испытаниях произошло k успехов. Рассмотрим событие .

По теореме сложения получим

 

Таким образом, получим

—формула Бернулли.

Пример. 2 шахматиста играют в шахматы. Оба шахматиста равны по силам. Что вероятнее выиграть одну партию из двух или две из четырех (ничьи во внимание не принимаются)?

, , .

.

 

Полиномиальное распределение.

Предположим, что в результате испытания возможны k исходов E1, E2, …, Ek,

P(Ei)=pi, . Тогда вероятность того, что в n независимых испытаниях событие E1 появиться r1 раз, E2 – r2 раз, …, Ek – rk раз вычисляется по формуле:

где

Эта формула полиномиальное распределения, обобщающая формулу Бернулли.

Теорема Пуассона. Локальная и интегральная теоремы Муавра-Лапласа.

Теорема. Если вероятность р появления события А в каждом испытании при неограниченном возрастании числа испытаний n изменяется таким образом, что некоторое событие А появится ровно k раз в n независимых испытаниях стремится к величине , то есть .

Доказательство:По формуле Бернулли вероятность того, что событие появится ровно k раз в n независимых испытаниях

, где q=1-p.

Отсюда .

По условию .

Подставляя, получим

 

Перейдем к пределу при , т.е.

.

формула Пуассона.

Теоремой удобно пользоваться, когда р→0, . Существуют специальные таблицы, в которых приведены значения вероятностей для различных а и k.

Формулой Бернулли удобно пользоваться, когда значение n не очень велико. Если же n достаточно велико, то удобнее пользоваться приближенными формулами, одна из которых содержится в следующей теореме.

Теорема (локальная теорема Муавра-Лапласа).

Если вероятность появления события А в каждом отдельном испытании постоянная и отлична от 0 и 1, т.е. 0<p<1, то вероятность того, что событие А появится ровно k раз в n независимых испытаниях.

, где ; , q=1-p.

Без доказательства. Имеются специальные таблицы значений функций φ(х). Нужно учитывать, что функция φ(х)–четная, т.е. φ(х)=φ(-х).

Пример. Пусть вероятность появления события А в каждом отдельном испытании р=0,8. Найти вероятность того. Что событие А появится 75 раз в 100 независимых испытаниях. (k=75, n=100.).

По формуле Бернулли

­–неудобно.

Воспользуемся теоремой Муавра-Лапласа:

.

Значение функции φ(-1,25)=φ(1,25)=0,1826 (по таблице). Тогда искомая вероятность: .

Теорема (интегральная теорема Муавра-Лапласа).

Если вероятность появления события А в каждом отдельном испытании постоянна и отлична от 0 и 1, т.е.0<p<1, то вероятность того, что событие А появится от k1 до k2 раз в n независимых испытаниях определяется выражением:

, где

—функция Лапласа,

, , .

Без доказательства.

Функция Лапласа—нечетная, т.е. . Значения находят по таблице.

Пример. Пусть вероятность появления события А Р(А) в каждом отдельном испытании равна 0,8. Найдем вероятность того, что событие А появится более 69 раз в 100 независимых испытаниях.

n=100

p=0,8 .

q=0,2

k1=70 .

k2=100

;

.

Случайные величины.

 

o Случайной величиной Хназывается функция X(w), отображающая пространство элементарных исходов Ω во множестве действительных чисел R.

Пример. Пусть дважды подбрасывается монета. Тогда .

Рассмотрим случайную величину Х–число выпадений герба на пространстве элементарных исходов Ω. Множество возможных значений случайной величины:2,1,0.

w (г,г) (г,р) (р,г) (р,р)
X(w)

Множество значений случайной величины обозначается Ωх. Одной из важных характеристик случайной величины является функция распределения случайной величины.

o Функцией распределения случайной величины Хназывается функция F(x) действительной переменной х, определяющая вероятность того, что случайная величина Х примет в результате эксперимента значение, меньшее некоторого фиксированного числа х.

.

.

Если рассматривать Х как случайную точку на оси ох, то F(x) с геометрической точки зрения—это вероятность того, что случайная точка Х в результате реализации эксперимента попадет левее точки х.