Баромембранные методы водоподготовки

Деминерализация воды ионным обменом и термическая деминерализация (дистилляция) позволяют опреснять воду, почти полностью обессоливать ее. Однако применение этих методов выявило наличие недостатков: необходимость регенерации, громоздкое и дорогое оборудование, дорогие иониты и др. В связи с этим быстрое распространение получили баромембранные методы обработки воды. Группа баромембранных методов включает в себя обратный осмос, микрофильтрацию, ультрафильтрацию и нанофильтрацию. Обратный осмос (размеры пор 1–15 Å, рабочее давление 0,5-8,0Мпа)применяется для деминерализации воды, задерживает практически все ионы на 92–99%, а при двухступенчатой системе и до 99,9%. Нанофильтрация (размеры пор 10–70 Å, рабочее давление 0,5–8,0 МПа) используется для отделения красителей, пестицидов, гербицидов,сахарозы, некоторых растворенных солей, органических веществ, вирусов и др. Ультрафильтрация (размеры пор 30–1000 Å, рабочее давление 0,2–1,0 МПа) применяется дляотделения некоторых коллоидов (кремния, например), вирусов (в том числе полиомиелита), угольной сажи, разделения на фракции молока и др. Микрофильтрация (размеры пор 500–20000 Å, рабочее давление от 0,01 до 0,2 МПа) используется для отделения некоторых вирусов и бактерий, тонкодисперсных пигментов, пыли активных углей, асбеста, красителей, разделения водо-масляныхэмульсий и т.п. Чем более крупные поры образованы в мембране, тем более понятен процесс фильтрации через мембрану, тем более он по физическому смыслу приближается к так называемому механическому фильтрованию. Промежуточную группу образуют так называемые трековые мембраны, получаемые посредством облучения на циклотроне лавсановых (полиэтилентерефталантных) пленок потоком тяжелых ионов. После воздействия на пленку ультрафиолетовыми лучами и травлением щелочью в пленке образуются поры диаметром 0,2–0,4 мкм (в основном 0,3 мкм).

Обратный осмос – один из наиболее перспективных методов обработки воды, преимущества которого заключены в малых энергозатратах, простоте конструкций аппаратов и установок, малых их габаритах и простоте эксплуатации; применяется для обессоливания вод с солесодержанием до 40 г/л, причем границы его использования постоянно расширяются.

Обезжелезивание воды

В теплоэнергетическом оборудовании (котлы паровые и водогрейные, теплообменники) железо – источник образования железонакипных отложений на поверхностях нагрева. В воде, поступающей на обработку в баромембранные, электродиализные, магнитные аппараты – всегда лимитируется содержание железа. Очистка воды от соединений железа – в ряде случаев довольно сложная задача, которая может быть решена только комплексно. Это обстоятельство в первую очередь связано с многообразием форм существования железа в природных водах. Чтобы определить наиболее действенный и экономичный для конкретной воды метод обезжелезивания, нужно произвести пробное удаление железа. Для обезжелезивания поверхностных вод используются только реагентные методы с последующей фильтрацией. Обезжелезивание подземных вод осуществляют фильтрованием в сочетании с одним из способов предварительной обработки воды: -упрощенная аэрация; -аэрация на специальных устройствах; -коагуляция и осветление; -введение таких реагентов-окислителей, как хлор, гипохлорит натрия или кальция, озон, перманганат калия. При мотивированном обосновании применяют катионирование, диализ, флотацию, электрокоагуляцию и другие методы. Для удаления из воды железа, содержащегося в виде коллоида гидроксида железа Fe(OH)3 или в виде коллоидальных органических соединений, например гуматов железа, используют коагулирование сульфатом алюминия или оксихлоридом алюминия, или железным купоросом с добавлением хлора или гипохлорита натрия. В качестве наполнителей для фильтров в основном используют песок, антрацит, сульфоуголь, керамзит, пиролюзит, а также фильтрующие материалы, обработанные катализатором, ускоряющим процесс окисления двухвалентного железа в трехвалентное. В последнее время всё большее распространение получают наполнители с каталитическими свойствами: Manganese Green Sand (MGS), Birm, МТМ, МЖФ и др. При наличии в воде коллоидного двухвалентного железа требуется проведение пробного обезжелезивания. Если отсутствует возможность осуществить его на первой стадии проектирования, выбирают один из вышеперечисленных методов на основании проведенного пробного обезжелезивания в лаборатории или опыта работы аналогичных установок.

Деманганация воды

Марганец присутствует в земной коре в большом количестве и обычно встречается вместе с железом. Содержание растворенного марганца в подземных и поверхностных водах, бедных кислородом, достигает нескольких мг/л. Российские санитарные нормы ограничивают уровень предельно допустимого содержания марганца в воде хозяйственно-питьевого назначения значением 0,1 мг/л. Если содержание марганца больше этих значений на внутренних стенках трубопроводов образуется осадок, который отслаивается в виде черной пленки.

Магнитная обработка воды

В последние десятилетия, как в России, так и за рубежом, для борьбы с образованием накипи и отложений на внутренней поверхности труб и теп-лообменного оборудования применяют магнитную обработку воды. Ее широко используют в конденсаторах паровых турбин, парогенераторах низкого давления и малой производительности, тепловых сетях и системах горячего водоснабжения, в различных теплообменных аппаратах. Эффект, последствия обработки воды в магнитном поле известны давно. Еще в ХIII в. были отмечены лечебные свойства «омагниченной» воды. Но только в ХХ в. началось использование магнитов в технике водоподготовки. Первый патент на аппарат магнитной обработки воды был выдан в 1946 г. бельгийскому инженеру Т. Вермейрену, еще за 10 лет до этого обнаружившего, что при нагреве воды, пересекшей силовые линии магнитного поля, на поверхности теплообмена накипь не образуется. Магнитная обработка заключается в пропускании потока воды через магнитное поле, создаваемое постоянным магнитом или электромагнитом. В настоящее время в России выпускают два типа аппаратов для магнитной обработки воды – с постоянными магнитами и электромагнитами. Время пребывания воды в аппарате определяется ее скоростью в пределах 1–3 м/с. Метод эффективен при обработке вод кальциево-карбонатного класса, которые составляют около 80% всех вод России. В сравнении с распространенными методами умягчения воды (ионообмен-ными, баромембранными) магнитную обработку отличают простота, дешевизна, безопасность, экологичность, низкие эксплутационные расходы.



/footer.php"; ?>