Структурная и приведенная формы модели

Система совместных, одновременных уравнений (или струк­турная форма модели) обычно содержит эндогенные и экзоген­ные переменные.

Эндогенные переменные обозначены в приведенной ранее системе одновременных уравнений как у. Это зависимые пере­менные, число которых равно числу уравнений в системе.

Экзогенные переменные обозначаются обычно как х. Это пре­допределенные переменные, влияющие на эндогенные перемен­ные, но не зависящие от них.

Простейшая структурная форма модели имеет вид:

 

 

Классификация переменных на эндогенные и экзогенные зависит от теоретической концепции принятой модели. Эконо­мические переменные могут выступать в одних моделях как эн­догенные, а в других — как экзогенные переменные. Внеэконо­мические переменные (например, климатические условия) вхо­дят в систему как экзогенные переменные. В качестве экзоген­ных переменных могут рассматриваться значения эндогенных переменных за предшествующий период времени (лаговые пере­менные). Так, потребление текущего года (уt) может зависеть не только от ряда экономических факторов, но и от уровня потреб­ления в предыдущем году (уt-1).

Структурная форма модели позволяет увидеть влияние изме­нений любой экзогенной переменной на значения эндогенной переменной. Целесообразно в качестве экзогенных переменных выбирать такие переменные, которые могут быть объектом регу­лирования. Меняя их и управляя ими, можно заранее иметь целе­вые значения эндогенных переменных.

Структурная форма модели в правой части содержит при эн­догенных и экзогенных переменных коэффициенты bi и aj (bi - коэффициент при эндогенной переменной, aj - коэффициент при экзогенной переменной), которые называются структурные коэффициенты модели. Все переменные в модели выражены в от­клонениях от среднего уровня, т. е. под х подразумевается , а под у — соответственно . Поэтому свободный член в каждом уравнении системы отсутствует.

Использование МНК для оценивания структурных коэффи­циентов модели дает, как принято считать в теории, смещенные и несостоятельные оценки. Поэтому обычно для определения структурных коэффициентов модели структурная форма модели преобразуется в приведенную форму модели.

Приведенная форма модели представляет собой систему линей­ных функций эндогенных переменных от экзогенных:

 

 

где - коэффициенты приведенной формы модели.

По виду приведенная форма модели ничем не отличается от системы независимых уравнений, параметры которой оценива­ются традиционным методом наименьших квадратов. Применяя МНК, можно оценить , а затем оценить значения эндогенных переменных через экзогенные.

Коэффициенты приведенной формы модели представляют собой нелинейные функции коэффициентов структурной формы модели. Рассмотрим это положение на примере простейшей структурной модели, выразив коэффициенты приведенной фор­мы модели ( ) через коэффициенты структурной модели (bi и aj). Для упрощения в модель не введены случайные переменные.

Для структурной модели вида

приведенная форма модели имеет вид:

в которой у2 из первого уравнения структурной модели можно выразить следующим образом:

Тогда система одновременных уравнений будет представлена как

Отсюда имеем равенство:

или

.

Тогда:

или

.

Таким образом, мы представили первое уравнение структур­ной формы модели в виде уравнения приведенной формы мо­дели:

Из уравнения следует, что коэффициенты приведенной фор­мы модели представляют собой нелинейные соотношения коэф­фициентов структурной формы модели, т. е.

и .

Аналогично можно показать, что коэффициенты приведен­ной формы модели второго уравнения системы ( и ) также нелинейно связаны с коэффициентами структурной модели. Для этого выразим переменную у1 из второго структурного уравнения модели как

Запишем это выражение у1 в левой части первого уравнения структурной формы модели:

.

Отсюда:

что соответствует уравнению приведенной формы модели:

,

т. е.

и .

Эконометрические модели обычно включают в систему не только уравнения, отражающие взаимосвязи между отдельными переменными, но и выражения тенденции развития явления, а также разного рода тождества. Например, Т. Хаавелмо в 1947 г., исследуя линейную зависимость потребления (с) от дохода (у), предложил одновременно учитывать тождество дохода. В этом случае модель имеет вид:

где a и b — параметры линейной зависимости с от у;

х — инвестиции в основной капитал и в запасы экспорта и импорта.

Проблема идентификации

 

При переходе от приведенной формы модели к структурной исследователь сталкивается с проблемой идентификации. Иден­тификация — это единственность соответствия между приведен­ной и структурной формами модели.

Рассмотрим проблему идентификации для случая с двумя эн­догенными переменными. Пусть структурная модель имеет вид:

где y1 и y2 — совместные зависимые переменные.

Из второго уравнения можно выразить у1 следующей фор­мулой:

.

Тогда в системе имеем два уравнения для эндогенной пере­менной у1 с одним и тем же набором экзогенных переменных, но с разными коэффициентами при них:

Наличие двух вариантов для расчета структурных коэффици­ентов в одной и той же модели связано с неполной ее идентифи­кацией. Структурная модель в полном виде, состоящая в каждом уравнении системы из n эндогенных и m экзогенных перемен­ных, содержит n(n – 1 + m) параметров. Так, при n = 2 и m = 3 полный вид структурной модели составит:

Как видим, модель содержит восемь структурных коэффици­ентов, что соответствует выражению n(n – 1 + m).

Приведенная форма модели в полном виде содержит nm пара­метров. Для нашего примера это означает наличие шести коэф­фициентов приведенной формы модели. В этом можно убедить­ся, обратившись к приведенной форме модели, которая будет иметь вид:

Действительно, она включает в себя шесть коэффициентов .

На основе шести коэффициентов приведенной формы моде­ли требуется определить восемь структурных коэффициентов рассматриваемой структурной модели, что, естественно, не мо­жет привести к единственности решения. В полном виде струк­турная модель содержит большее число параметров, чем приве­денная форма модели. Соответственно n(n – 1 + m) параметров структурной модели не могут быть однозначно определены из nm параметров приведенной формы модели.

Для того чтобы получить единственно возможное решение для структурной модели, необходимо предположить, что некото­рые из структурных коэффициентов модели ввиду слабой взаи­мосвязи признаков с эндогенной переменной из левой части си­стемы равны нулю. Тем самым уменьшится число структурных коэффициентов модели. Так, если предположить, что в нашей модели a13 = 0 и a21 = 0, то структурная модель примет вид:

В такой модели число структурных коэффициентов не пре­вышает число коэффициентов приведенной модели, которое равно шести. Уменьшение числа структурных коэффициентов модели возможно и другим путем: например, приравниванием некоторых коэффициентов друг к другу, т. е. путем предположе­ний, что их воздействие на формируемую эндогенную перемен­ную одинаково. На структурные коэффициенты могут наклады­ваться, например, ограничения вида bij + aij = 0.

С позиции идентифицируемости структурные модели можно подразделить на три вида:

· идентифицируемые;

· неидентифицируемые;

· сверхидентифицируемые.

Модель идентифицируема, если все структурные ее коэффици­енты определяются однозначно, единственным образом по коэф­фициентам приведенной формы модели, т. е. если число парамет­ров структурной модели равно числу параметров приведенной формы модели. В этом случае структурные коэффициенты моде­ли оцениваются через параметры приведенной формы модели и модель идентифицируема. Рассмотренная выше структурная мо­дель

с двумя эндогенными и тремя экзогенными (предопределенными) переменными, содержащая шесть структурных ко­эффициентов, представляет собой идентифицируемую модель.

Модель неидентифицируема, если число приведенных коэф­фициентов меньше числа структурных коэффициентов, и в ре­зультате структурные коэффициенты не могут быть оценены че­рез коэффициенты приведенной формы модели. Структурная модель в полном виде

содержащая n эндогенных и m предо­пределенных переменных в каждом уравнении системы, всегда неидентифицируема.

Модель сверхидентифицируема, если число приведенных ко­эффициентов больше числа структурных коэффициентов. В этом случае на основе коэффициентов приведенной формы можно по­лучить два или более значений одного структурного коэффици­ента. В этой модели число структурных коэффициентов меньше числа коэффициентов приведенной формы. Так, если в структур­ной модели полного вида

предположить нулевые значения не только коэффициентов a13 и a21, но и a22 = 0, то система уравнений станет сверхидентифицируемой:

В ней пять структурных коэффициентов не могут быть одно­значно определены из шести коэффициентов приведенной фор­мы модели. Сверхидентифицируемая модель в отличие от неидентифицируемой модели практически решаема, но требует для этого специальных методов исчисления параметров.

Структурная модель всегда представляет собой систему сов­местных уравнений, каждое из которых необходимо проверять на идентификацию. Модель считается идентифицируемой, если каждое уравнение системы идентифицируемо. Если хотя бы одно из уравнений системы неидентифицируемо, то и вся модель счи­тается неидентифицируемой. Сверхидентифицируемая модель содержит хотя бы одно сверхидентифицируемое уравнение.

Выполнение условия идентифицируемости модели проверя­ется для каждого уравнения системы. Для того чтобы уравнение было идентифицируемо, нужно, чтобы число предопределенных переменных, отсутствующих в данном уравнении, но присутству­ющих в системе, было равно числу эндогенных переменных в данном уравнении без одного.

Если обозначить число эндогенных переменных в j-м уравнении системы через Н, а число экзогенных (предопределенных) переменных, которые содержатся в системе, но не входят в дан­ное уравнение, — через D, то условие идентифицируемости моде­ли может быть записано в виде следующего счетного правила:

D + 1 = Н — уравнение идентифицируемо;

D + 1 < Н — уравнение неидентифицируемо;

D + 1 > Н — уравнение сверхидентифицируемо.

Предположим, рассматривается следующая система одновре­менных уравнений:

Первое уравнение точно идентифицируемо, ибо в нем при­сутствуют три эндогенные переменные - у1, у2, у3, т. е. Н = 3, и две экзогенные переменные – х1 и х2, число отсутствующих экзоген­ных переменных равно двум — х3 и х4, D = 2. Тогда имеем равен­ство: D + 1 = Н, т. е. 2 + 1 = 3, что означает наличие идентифици­руемого уравнения.

Во втором уравнении системы Н = 2 (у1 и у2) и D = 1 (х4). Ра­венство D + 1 = H, т.е. 1 + 1 = 2. Уравнение идентифицируемо.

В третьем уравнении системы H = 3 (у1, у2, у3), а D = 2 (x1 и х2). Следовательно, по счетному правилу D + 1 = H, и это уравнение идентифицируемо. Таким образом, рассмотренная система в целом иденти­фицируема.

Предположим, что в рассматриваемой модели a21 = 0 и a33 = 0. Тогда система примет вид:

Первое уравнение этой системы не изменилось. Система по-прежнему содержит три эндогенные и четыре экзогенные пе­ременные, поэтому для него D = 2 при Н = 3, и оно, как и в предыдущей системе, идентифицируемо. Второе уравнение имеет Н = 2 и D = 2 (х1 и х4), так как 2 + 1 > 2. Данное уравнение сверхидентифицируемо. Также сверхидентифицируемым оказывается и третье уравнение системы, где Н = 3 (у1, у2, у3) и D = 3 (x1, х2, х3), т.е. счетное правило составляет неравенство: 3 + 1 > 3 или D +1 >Н. Модель в целом является сверхидентифицируемой.

Для оценки параметров структурной модели система должна быть идентифицируема или сверхидентифицируема, если же хотя бы одно из уравнений неидентифицировано, то модель в целом признается неидентифицируемой.

Рассмотренное счетное правило отражает необходимое, но недостаточное условие идентификации. Более точно условия идентификации определяются, если накладывать ограничения на коэффициенты матриц параметров структурной модели. Урав­нение идентифицируемо, если по отсутствующим в нем перемен­ным (эндогенным и экзогенным) можно из коэффициентов при них в других уравнениях системы получить матрицу, определи­тель которой не равен нулю, а ранг матрицы не меньше, чем чис­ло эндогенных переменных в системе без одного.

Целесообразность проверки условия идентификации модели через определитель матрицы коэффициентов, отсутствующих в данном уравнении, но присутствующих в других уравнениях, объясняется тем, что возможна ситуация, когда для каждого уравнения системы выполнено счетное правило, а определитель матрицы названных коэффициентов равен нулю. В этом случае соблюдается лишь необходимое, но недостаточное условие иден­тификации.

Обратимся к следующей структурной модели:

Проверим каждое уравнение системы на необходимое и до­статочное условия идентификации. Для первого уравнения Н=3 (у1, у2, у3) и D = 2 (x3 и х4 отсутствуют), т. е. D + 1 = Н, необходи­ма условие идентификации выдержано, поэтому уравнение точ­но идентифицируемо. Для проверки на достаточное условие идентификации заполним следующую таблицу коэффициентов при отсутствующих в первом уравнении переменных, в которой определитель матрицы коэффициентов равен нулю.

Матрица коэффициентов (1)

Уравнение Переменные
х3 х4
а23 0 а24 0

 

Следовательно, достаточное условие идентификации не выполняется и первое уравнение нельзя считать идентифици­руемым.

Для второго уравнения Н = 2 (у1, у2), D = 1 (отсутствует х1) счетное правило дает утвердительный ответ: уравнение иденти­фицируемо D + 1 = Н.

Достаточное условие идентификации выполняется. Коэффи­циенты при отсутствующих во втором уравнении переменных со­ставят.

Матрица коэффициентов (2)

Уравнение Переменные
у3 х1
b23 -1 а11 a31

 

Согласно таблице определитель матрицы равен 0, а ранг матрицы равен 2, что соот­ветствует следующему критерию: ранг матрицы коэффициентов должен быть не меньше числа эндогенных переменных в системе без одной. Итак, второе уравнение точно идентифицируемо.

Третье уравнение системы содержит Н = 3 и D = 2, т. е. по не­обходимому условию идентификации оно точно идентифицируе­мо (D + 1 = Н). Противоположный вывод имеем, проверив уравнение на достаточное условие идентификации. Составим таблицу коэффициентов при переменных, отсутствующих в тре­тьем уравнении, в которой определитель матрицы равен нулю.

Матрица коэффициентов (3)

Уравнение Переменные
х3 х4
0 a23 0 a24

Из таблицы видно, что достаточное условие идентификации не выполняется. Уравнение неидентифицируемо. Следовательно, рассматриваемая в целом структурная модель, идентифицируе­мая по счетному правилу, не может считаться идентифицируемой исходя из достаточного условия идентификации.