Физические основы вытеснения нефти и газа из пластов

 

Как учитывать свойства пласта при проектировании и анализе? Приток флюида осуществляется благодаря энергии пласта, связанной с напором краевых вод, напором газа в газовой шапке, энергии газа, который растворён в нефти и выделяется при снижении давления, упругости пород и гравитационной энергии. Доминирующая энергия определяет определённый режим.

В результате возникновения сил воздействия полная энергия начинает расходоваться на их преодоление. Эти силы:

сила гидравлического сопротивления, которая препятствует движению флюидов, пропорциональная скорости потока и вязкости жидкости; (эта сила аналогична силе трения в трубах, но т.к. наличествуют различные гранулы и шероховатости, то процесс сильно осложнён);

капиллярные силы, которые приводят к тому, что сплошная нефтяная фаза начинает разбиваться на отдельные капли (глобулы), по всей поверхности которых действуют капиллярные силы, и закупоривают пласт;

поверхностные силы (возникающие на границе нефть-жидкость) имеют различную природу и молекулярный характер, связанный с магнитными, электрическими и расклинивающими силами (силами Дерягина), проявляющимися в тонких капиллярах. В результате действия поверхностных сил часть нефти будет адсорбироваться и фильтрация будет затухать;

электрокинетические явления, связанные с возникновением электрических явлений при движении жидкости через пористую среду.

Если фильтровать воду через керн и измерять разность потенциалов, то будет определяться дополнительная нагрузка.

Электрокинетические явления связаны с явлениями электроосмоса и электрофореза.

При движении жидкости возникает разность потенциалов – явление электрофореза. Справедливо и наоборот, при приложении разности потенциалов возникает движение жидкости – явление электроосмоса.

Если возьмём дисперсию, например, буровой раствор, и приложим разность потенциалов, то возникнет движение её твёрдых частиц.

Расход жидкости под действием электрического поля записывается через формулу Гельмгольца- Смолуховского:

v=S×x×D×h/(4×p×m),

где S – суммарная площадь поперечного сечения капиллярных каналов;

x - дзета- потенциал;

D – диэлектрическая проницаемость;

h – градиент потенциала dU/d1;

m - вязкость жидкости.

 

Знание этой зависимости даёт возможность управлять процессом фильтрации с помощью электрического поля.

Рассмотрим влияние капиллярных сил:

 

Рк=s×соsq/rк.

 

Система, состоящая из двух капилляров, даёт следующую картину:

r1


Н

В

 

r2

 

Вытеснение пойдёт по узкому капилляру. Оно опередит вытеснение по широкому капилляру и в нём останется нефти и газ. Существует определяющий критерий:

Например, Рк~0.5 ат; DРг=50 ат. Из закона Дарси w~grаd(р). Этот факт реализуется на расстоянии 1~100 м. Тогда:

г/D1»50/100=0.5 ат/м;

Рк/D1=0.5/10-3=5×102 ат/м.

Т.е. капиллярный перепад оказывается доминирующим при вытеснении нефти и газа водой. Этот факт сказывается на явлении пропитки и характеристиках заводнения пласта.

S

ост. н/г

 

В В+Н/Г

Для гидрофильного пласта.

I II III

 

rс х

 

х – расстояние от нагнетательной скважины.

 

Выделяются 3 зоны:

I. - характеризует полную промывку пласта водой, т.н. промытая зона. В промытой зоне подвижна только вода, нефти и газ при этом – остаточные, неподвижные. Эта зона возникает при длительной эксплуатации залежи.

II. - переходная зона, или зона смеси вода/нефть, в ней движутся и нефть, и вода, т.е. происходит двухфазная фильтрация.

III. – зона, где движется только нефть, воды там пока нет.

 

Было выявлено, что капиллярные силы контролируют размер переходной зоны в пласте и остаточное нефтегазонасыщение в промытой зоне.

Изменение картины вытеснения в случае инверсии капиллярных сил выглядит следующим образом:

 
 


Рк +

 

 

S

 

 

Рк -


Если пласт гидрофобный зависимость S(х) иная:

 
 


S

 

 

х

Изменение в следующем:

1. полностью исчезает промытая зона;

2. переходная зона занимает практически весь пласт.

 

Из этого можно сделать вывод, что заводнение в гидрофобных пластах неэффективно.

 

Лекция №19.