Применения солнечных батарей

Устройство солнечных батарей

 

Современные солнечные батареи делаются в основном на основе кремния. Существуют две технологии изготовления — монокристаллическая и поликристаллическая. Последняя более современна и используется для получения более дешевых солнечных батарей. Также существуют солнечные батареи, созданные на основе теллурида кадмия, селенидов меди индия и галия, а также аморфного кремния.

Солнечная батарея (называемые также фотоэлектрические элементы) — это твердотельные электрические устройства, предназначенные для преобразования солнечной энергии в электрическую, посредством фотоэлектрического эффекта. Каждая солнечная батарея состоит из солнечных ячеек.

Сборки солнечных ячеек используются для создания модулей, для выработки электричества из солнечной энергии. Такие сборки монтируются вместе, для получения группы из солнечных модулей, которые в свою очередь устанавливаются на специальные поворотные устройства или стеллажи, ориентирующие группу солнечных модулей на солнце, которая также включает в себя другой электронный обвес. Такие сборки называются солнечными панелями.

Надо заметить, что в русском языке и все детали сборки вместе и по отдельности называют солнечными батареями. Это неверно, поскольку слово “батарея” подразумевает под собой аккумулирование и/или выделение энергии. По сути, батареи в солнечной панели тоже есть — это могут быть аккумуляторы, которые накапливают заряд, поступающий от солнечных сборок. Но солнечная сборка это скорее генератор.

Также следует сказать, что в английском языке присутствует упоминание как солнечного модуля, так и солнечной панели. Различие состоит в том, что солнечный модуль нельзя разобрать на солнечные ячейки, он представляет собой самостоятельное, спаянное и гидроизолированное устройство. В то время как солнечную панель можно разобрать на солнечные модули.

В данном цикле статей мы будем использовать более привычное словосочетание — солнечная батарея, имея ввиду именно неразборный солнечный модуль, собранный из солнечных ячеек.

Вообще видов фотогальванических ячеек много. Они необязательно используются для создания солнечных батарей. Они могут служить для обнаружения света в любых других системах, обнаруживая, например инфракрасное излучение. Также фотоэлектрические ячейки используются для измерения интенсивности светового потока.

 

Присутствует несколько обозначений фотоэффекта.

 

Фотовольтаический эффект (греч. (phs) означающее свет и англ. “voltaic” по имени Вольты) — это возникновение электродвижущей силы под действием электромагнитного поля.

Фотогальванический эффект — возникновение электрического тока при освещении полупроводника или диэлектрика или возникновение электро-движущей силы на освещаемом образце при разомкнутой цепи.

В тоже время фотоэффект — это испускание электронов или любого электромагнитного излучения в веществах, будь то твердые или жидкие.

Для удобства мы будем употреблять термин фотогальванические элементы.

Применения солнечных батарей

Фотогальванические модули обычно заключены в своеобразный корпус. Сверху их покрывают стеклом, которое позволяет солнечному свету проникать до самих ячеек, в тоже время защищая их от внешних механических и химический воздействий. Сзади модули защищены пластиковой крышкой с креплениями.

Солнечные ячейки обычно соединены в модулях в серии, чтобы создавать достаточное напряжение, в этом случае они соединяются по последовательной схеме. Параллельное соединение ячеек дает больший ток, но оно проблематично из-за условий внешней среды и электрических эффектов, протекающих в панелях. Например, затенение отдельных строк из ячеек (солнечный модуль имеет строчную структуру) может привести к обратным токам через затененные ячейки от освещенных товарищей. Это может привести к серьезному снижению эффективности и даже выходу ячеек из строя.

 

Строки из ячеек должны быть самостоятельными элементами, например четыре строки по десять вольт. Для предотвращения теневых эффектов используются специальные схемы распараллеливания и защиты строк.

Солнечные модули могут соединяться в панели последовательно или параллельно, для достижения необходимого соотношения напряжения и силы тока. Однако специалистами рекомендуется использовать специальные независимые системы распределения нагрузки — MPPT (maximum power point trackers).

Системы распределения помогают избежать фиксированной цепи, переключая модули в параллельный или последовательный режимы для компенсации затененных участков солнечной панели.

Собранная с солнечной панели энергия поступает к потребителям через инверторы напряжения. В автономных системах, энергия запасается в батареях и используется по надобности.