Производная основных элементарных функций

Производная логарифмической функции. y=logax

Dy=loga(x+Dx)-logax=loga(1+Dx/x)=1 loga(1+Dx/x)= 1loga(1+t)=1 loga(1+t)1/t

Dx Dx Dx x Dx/x x t x

где t=Dx/x Используя непрерывность функции logax в точке х=е и первый замечательный предел, найдём производную логарифмической функции: (logах)¢= 1(logа(lim(1+t)1/t) = 1logae= 1.

x t®0 x x lna

Производная показательной функции.

У=ах является обратной для функции х=logау. По теореме

у¢х= 1= 1 =ylna

y 1/ylna

Поскольку у=ах, получаем (ах)¢=ахlna.

Производная степенной функции.

Функция у=ха при х>0 может быть представлена в виде хаalnx. Найдём (ха)¢=( еalnx)¢= еalnx(alnx)¢=ха*а/х=аха-1 Аналогично доказывается для x<0.

Производные тригонометрических функций.

С помощью формулы sinа-sinb=2sin[(a-b)/2]*cos[(a+b)/2] , первого замечательного предела и непрерывности функции cos x найдём

(sinх)¢=lim sin (х+Dх) – sinх= lim 2sin(Dх/2) cos(х+Dх/2) =

Dx®0 Dx Dx®0 Dx

=lim sin(Dх/2) cos(х+Dх/2) = cos x

Dx®0 Dx/2

Для нахождения производных функций cos x и tg x можно использовать тождество cos x=sin(x-p/2) , правило дифференцирования сложной функции.

Итак, (sin х)¢=cos x, (cos x)¢= - sin x, (tg x)¢=1/cos2 x.

Производные обратных тригонометрических функций.

Функция у=arcsinx является обратной для функции х=sinу. Следовательно, (arcsinx)¢x= 1 = 1= 1= 1

(siny)¢y cosy Ö1-sin2xØ Ö1-x2Ø

Аналогично находятся остальные обратные тригонометрические функции. (arcsinx)¢=1/Ö1-x2Ø, (arccosx)¢= - 1/Ö1-x2Ø, (arctgx)¢=-1/(x2+1).


12. Правило Лопиталя

Теорема (правило Лопиталя). Пусть А – число, символ одностороннего предела (А=а±0) или символ бесконечности (А=±∞). Пусть функции ƒ(х) и g(х) либо обе бесконечно малые, либо обе бесконечно большие при х→А. Тогда, если существует предел

(конечный или бесконечный),

 

то существует и предел при этом выполняется равенстmage054-1549.gif">

Доказательство:

Доказательство теоремы дадим в случае, когда ƒ(х) и g(х) – бесконечно малые функции и А=а – число. Изменим, если это необходимо, определение функций ƒ(х) и g(х) в точке а так, чтобы значения этих функций в точке а были бы равны нулю: ƒ(х) = g(х)=0. Так как

 

и

 


то ƒ(х) и g(х) непрерывны в точке а,и к этим функциям можно применить теорему Коши. Учитывая, что ƒ(а) = ƒ(b)=0, получим

 

 

для некоторой точки с, расположенной между точками а и х. При х→а имеем с→а и, следовательно если ƒ(х)→0 и g(х)→0 (соответственно, |ƒ(х)|→+∞, |g(х)|→+∞), когда а→А.Правило Лопиталя позволяет во многих случаях найти предел вида

или, иными словами, раскрыть неопределенность.

В ряде случаев по правилу Лопиталя удается раскрыть неопределенности вида

Для этого следует воспользоваться тождеством

 

которое приводит указанные неопределенности к виду 0•х.



/li>