Типы композиционных материалов

Введение

Общепризнанно, что уровень развития техники в значительной степени определяется наличием необходимых материалов. Наиболее наглядно это можно проследить на примере развития древних цивилизаций, когда изобретение или создание нового прогрессивного материала становилось толчком к развитию техники и цивилизации. Недаром технический уровень развития цивилизации характеризуют видом материала, позволявшего создавать в свое время наиболее передовые орудия и средства производства. Настоящее время многие ученые называют «веком композиционных материалов», но композиционные материалы зародились не в настоящее время, человек использовал их еще в древние времена. Действительно, в настоящее время доля ПКМ среди потребляемых материалов как никогда велика и с каждым годом растет. Бурное развитие современной техники требует все новых материалов с заранее заданными свойствами. Требуются материалы со сверхвысокой прочностью, твердостью, жаростойкостью, коррозионной стойкостью, другими характеристиками и совместным сочетанием этих свойств.

Зарождение науки о ПКМ относят к 50-м годам. В середине 50-х годов ВВС США решили применить в авиастроении новый класс материалов – композиты на основе новых видов волокон с высокими прочностными и упругими характеристиками – борных и углеродных. Национальное управление по аэронавтике и исследованию космического пространства (НАСА) и ВВС США фактически явились кураторами исследовательской и технологических программ в области создания композитов. Это послужило причиной быстрого развития науки о композиционных материалах или композитах, возникшей на стыке различных областей знаний. В короткие сроки были получены совершенно новые материалы с необходимым комплексом свойств, разработаны технологии их производства и методы их расчета.

Вместе с тем, сейчас известны сотни тысяч различных некомпозиционных природных и искусственных материалов, которые уже не отвечают возрастающим требованиям. При этом открытие принципиально новых материалов происходит крайне редко. Это свидетельствует о том, что подавляющее большинство «простых» (некомпозиционных) материалов уже открыто, и ждать в этом направлении больших достижений не приходится, но научно-технический прогресс не останавливается и требует новых материалов, поэтому основное и долгосрочное направление в разработке новых материалов сейчас состоит в создании материалов путем соединения различных уже известных материалов, то есть – в получении композиционных материалов (КМ). Главное из преимуществ ПКМ по сравнению с традиционными материалами – это уникальное сочетание свойств. Как правило, композиционные материалы не являются “чемпионами” по отдельно взятому свойству, однако по сочетанию определенных свойств им нет равных.

Несмотря на успехи в области полимерных композиционных материалов, закономерности, определяющие связь состава и условий получения композиционных материалов с их структурой и свойствами, оказались настолько сложными, что очень многие из них до сих пор не ясны. В результате, в настоящее время практические достижения в области разработки композиционных полимерных материалов значительно опережают их теоретическую интерпретацию.

Передовые в техническом плане отрасли промышленности, такие как ракетостроение, авиастроение, автостроение, являются лидерами в потреблении композиционных материалов.

 

Композиционные материалы

После того как современная физика металлов подробно разъяснила нам причины их пластичности, прочности и ее увеличения, началась интенсивная систематическая разработка новых материалов. Это приведет, вероятно, уже в вообразимом будущем к созданию материалов с прочностью, во много раз превышающей ее значения у обычных сегодня сплавов. При этом большое внимание будет уделяться уже известным механизмам закалки стали и старения алюминиевых сплавов, комбинациям этих известных механизмов с процессами формирования и многочисленными возможностями создания комбинированных материалов. Два перспективных пути открывают комбинированные материалы, усиленные либо волокнами, либо диспергированными твердыми частицами. У первых в неорганическую металлическую или органическую полимерную матрицу введены тончайшие высокопрочные волокна из стекла, углерода, бора, бериллия, стали или нитевидные монокристаллы. В результате такого комбинирования максимальная прочность сочетается с высоким модулем упругости и небольшой плотностью. Именно такими материалами будущего являются композиционные материалы.

Композиционный материал – конструкционный (металлический или неметаллический) материал, в котором имеются усиливающие его элементы в виде нитей, волокон или хлопьев более прочного материала. Примеры композиционных материалов: пластик, армированный борными, углеродными, стеклянными волокнами, жгутами или тканями на их основе; алюминий, армированный нитями стали, бериллия. Комбинируя объемное содержание компонентов, можно получать композиционные материалы с требуемыми значениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создавать композиции с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами.

Типы композиционных материалов

2.1 Композиционные материалы с металлической матрицей

Композиционные материалы состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие ту или иную композицию, получили название композиционные материалы.

2.2 Композиционные материалы с неметаллической матрицей

Композиционные материалы с неметаллической матрицей нашли широкое применение. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная и полиамидная. Угольные матрицы коксованные или пироуглеродные получают из синтетических полимеров, подвергнутых пиролизу. Матрица связывает композицию, придавая ей форму. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов, нитридов и других), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.

Свойства композиционных материалов зависят от состава компонентов, их сочетания, количественного соотношения и прочности связи между ними. Армирующие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей. Содержание упрочнителя в ориентированных материалах составляет 60-80 об. %, в неориентированных (с дискретными волокнами и нитевидными кристаллами) – 20-30 об. %. Чем выше прочность и модуль упругости волокон, тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиги и сжатии и сопротивление усталостному разрушению.

По виду упрочнителя композиционные материалы классифицируют на стекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты и органоволокниты.

В слоистых материалах волокна, нити, ленты, пропитанные связующим, укладываются параллельно друг другу в плоскости укладки. Плоские слои собираются в пластины. Свойства получаются анизотропными. Для работы материала в изделии важно учитывать направление действующих нагрузок. Можно создать материалы как с изотропными, так и с анизотропными свойствами. Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала. Применяется укладка упрочнителей из трех, четырех и более нитей. Наибольшее применение имеет структура из трех взаимно перпендикулярных нитей. Упрочнители могут располагаться в осевом, радиальном и окружном направлениях. Трехмерные материалы могут быть любой толщины в виде блоков, цилиндров. Объемные ткани увеличивают прочность на отрыв и сопротивление сдвигу по сравнению со слоистыми. Система из четырех нитей строится путем разложения упрочнителя по диагоналям куба. Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях. Однако создание четырехнаправленных материалов сложнее, чем трехнаправленных.