Основные космологические теории эволюции Вселенной

Учение о мегамире как едином целом и всей охваченной астроно­мическими наблюдениями области Вселенной (Метагалактике) называется космологией.

Выводы космологии основываются на законах физики и данных наблюдательной астрономии. Космологические теории различаются в зависимости от того, какие физические принципы и законы положены в их основу. Построенные в соответствии с космологическими теориями модели должны допускать проверку для наблюдаемой области Вселенной, выводы теории – подтверждаться наблюдениями (во всяком случае, не противоречить им), теория – предсказывать новые явления.

В конце XX в. этому требованию наилучшим образом удовлетворяли разработанные на основе общей теории относительности однородные изотропные модели нестационарной «горячей» Вселенной.

Возникновение современной космологии связано с созданием релятивистской теории тяготения А. Эйнштейном (1916) и зарождением внегалактической астрономии (начиная с 20-х гг. XX в.).

На первом этапе развития релятивистской космологии главное внимание уделялось геометрии Вселенной кривизна четырехмерного пространства-времени и возможная замкнутость Вселенной.

Начало второго этапа можно датировать работами А.А. Фридмана, который в 1922–24 гг. доказал, что Вселенная, заполненная тяготеющим веществом, не может быть стационарной – она должна расширяться или сжиматься; но эти принципиально новые результаты получили признание лишь после открытия красного смещения (эффекта «разбегания» галактик) астрономом Э. Хабблом (1929).

В результате на первый план выступили проблемы механик Вселенной и ее «возраста» (длительности расширения).

Третий этап в развитии космологии связан с моделями «горячей» Вселенной (Г. Гамов, вторая половина 40-х гг.), в которых основное внимание переносится на физику Вселенной – состояние вещества и физические процессы, идущие на разных стадиях расширения Вселенной, включая наиболее ранние стадии, когда состояние было необычным.

В основе теории лежат уравнения А. Эйнштейна общей теории относительности, из них следуют наличие кривизны пространства-времени и связь кривизны с плотностью вещества. Космологические уравнения допускают существование двух моделей. В одной из кривизна трехмерного пространства отрицательна или (в пределе) равна нулю. Вселенная бесконечна (открытая модель). В такой модели расстояния между скоплениями галактик со временем неограниченно возрастают. В другой модели кривизна пространства положительна, Вселенная конечна (но столь же безгранична, как и в открытой модели). В такой (замкнутой) модели расширение со временем сменяется сжатием. В ходе эволюции Вселенной кривизна трехмерного пространства уменьшается при расширении, увеличивается при сжатии, но знак кривизны не меняется, т.е. открытая модель остается открытой, замкнутая – замкнутой. Начальные стадий эволюции по обеим моделям совершенно одинаковы: должно было существовать особое начальное состояние – сингулярность с огромной плотностью массы и кривизной пространства и взрывное, замедляющееся со временем расширение.

Из космологических уравнений следует, что равная нулю кривизна пространства может иметь место только при строго определенной критической плотности ρкр.

Если , то мир замкнут, при мир является открытым. Два указанных исходных положения достаточны для суждений об общем характере эволюции Вселенной, но они оставляют открытым вопрос о ее начальном состоянии.

С 60–70-х гг. XX в. стала общепринятой модель «горячей» Вселенной (предполагается высокая первоначальная температура). В условиях очень высокой температуры (Т > 1013 К) существовала лишь равновесная смесь различных элементарных частиц (включая фотоны и нейтрино). Можно рассчитать состав такой смеси при разных температурах Т, соответствующих последовательным этапам эволюции, найти закон расширения однородной и изотропной Вселенной и изменение ее физических параметров в процессе расширения.

Согласно этому закону во Вселенной в момент с должны были существовать фотоны, электроны, позитроны, нейтрино, антинейтрино, а также большая примесь нуклонов (протонов и нейтронов). В результате последующих превращений к моменту мин из нуклонов образовалась смесь легких ядер (2/3 водорода и 1/3 гелия по массе; все остальные химические элементы синтезировались из этого дозвездного вещества, причем намного позднее, в результате ядерных реакций в недрах звезд). В момент образования нейтральных атомов гелия и водорода (рекомбинация нуклонов и электронов в атомы произошла при лет) вещество становилось прозрачным для оставшихся фотонов, и они должны наблюдаться в настоящее время в виде реликтового излучения, свойства которого можно предсказать на основе теории «горячей» Вселенной.

Наибольшее принципиальное значение этой теории имеют вы­воды о нестационарности (расширении) Вселенной, о высоких зна­чениях плотности и температуры в начале расширения («горячая» Вселенная) и об искривленности пространства-времени.

Вывод о нестационарности надежно подтвержден космологическим красным смешением, обнаруженным Э. Хабблом в 1929 г.: наблюдае­мая область Вселенной расширяется, и это расширение длится, по меньшей мере, 15—20 млрд. лет. Столь же основательное подтвер­ждение нашла и концепция «горячей» Вселенной: в (1965) американ­скими физиками А.А. Пензиасом и Р.В. Вильсоном было открыто реликтовое излучение, которое оказалось изотропным, а спектр его – равновесным с Т = 3 К.

Что касается плотности вещества, то астрономические наблюде­ния приводят к значениям усредненной плотности вещества, вхо­дящего в видимые галактики, г/см3. Определить плот­ность скрытого (невидимого) вещества, а тем более плотность, создаваемую нейтрино (если масса нейтрино не равна нулю), гораз­до труднее, и неопределенность суммарной плотности из-за этого весьма велика. На основе имеющихся наблюдательных данных (10–31 < ρ < 10–29 г/см3) нельзя сделать окончательного выбора между открытой (расширяющейся безгранично) и замкнутой (расши­рение в далеком будущем сменится сжатием) моделями. Эта неоп­ределенность никак не сказывается на общем характере прошлого и современного расширения, но влияет на возраст Вселенной (дли­тельность расширения).

Модель расширяющейся Вселенной

Значение термина Вселенная более узкое и приобрело специфически научное звучание.

Вселенная – место вселения человека, доступное эмпирическому наблюдению. Постепенное сужение научного значения термина Вселенная вполне понятно, так к естествознание, в отличие от философии, имеет дело только с тем, что эмпирически проверяемо современными научными методами.

Вселенную в целом изучает наука, называемая космологией, т. е. наукой о космосе. Космология, в основе своей открывает упорядоченность нашего мира и нацелена на поиск законов его функционирования. Открытие этих законов и представляет с бой цель изучения Вселенной как единого упорядоченного целого.

Все законы и научные теории являются моделями, поскольку они могут быть заменены в процессе развития науки другими концепциями, но модели Вселенной как бы в большей степени модели, чем многие иные научные утверждения.

Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, созданной Альбертом Эйнштейном в 1916 году. В основе этой модели лежат два предположения:

- свойства Вселенной одинаковы во всех ее точках и направлениях;

- наилучшим известным описанием гравитационного поля являются уравнение Эйнштейна. Из этого следует кривизна пространства и связь кривизны с плотностью массы (энергии).

Важным пунктом данной модели является ее нестационарность. Это определяется двумя постулатами теории относительности:

- принципом относительности, гласящим, что во всех инерционных системах выполняются все законы сохранения вне зависимости от того, с какими скоростями, равномерно прямолинейно движутся эти системы друг относительно друга;

- экспериментально подтвержденным постоянством скорости света.

Красное смещение – это понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу. При излучении происходит «покраснение», т. е. линии спектра сдвигаются в сторону более длинных (красных) волн.

Для всех далеких источников света красное смещение было зафиксировано, причем, чем дальше находился источник, тем в большей степени. Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждало гипотезу об удалении их, т. е. о расширении Метагалактики –, видимой части Вселенной.

Составной частью модели расширяющейся Вселенной является представление Большом Взрыве, происшедшем где-то примерно 12 –18 млрд. лет назад

Как это ни удивительно, современная наука допускает (именно допускает, но не утверждает), что все могло создаться из ничего. «Ничего» в научной терминологии называется вакуумом.

Современная квантовая механика допускает (это не противоречит теории), что вакуум может приходить в «возбужденное состояние», вследствие чего в нем может образоваться поле, а из него (что подтверждается современными физическими экспериментами) – вещество

Рождение Вселенной «из ничего» означает с современной научной точки зрения самопроизвольное возникновение из вакуума, когда в отсутствии частиц происходит случайная флуктуация.

Флуктуация представляет собой появление виртуальных частиц, которые непрерывно рождаются и сразу же уничтожаются, но так же участвуют во взаимодействиях, как и реальные частицы. Благодаря флуктуациям, вакуум приобретает особые свойства, проявляющиеся в наблюдаемых эффектах.

После Большого Взрыва образовался сгусток плазмы «состояния, в котором находятся элементарные частицы» нечто среднее между твердым и жидким состоянием, который и начал расширяться все больше и больше под действием взрывной волны.

По наиболее обоснованным оценкам, возраст расширяющейся Вселенной составляет примерно 13 млрд. лет.

 

Контрольные вопросы

1.Что такое корпускулярно-волновой дуализм материи?

2. Почему энтропия является мерой порядка и беспорядка в природе?

3. Какова классификация материи на микро-, макро-, мегамиры?

4. Сформулируйте основные законы сохранения.

5. Каково объяснение периодической системы Д.И. Менделеева?

6. Каковы фундаментальные взаимодействия в природе?

7. Какова связь симметрии и законов сохранения?

8. какова связь пространства и времени в специальной теории относительности?

9. В чем различие между динамическими и статистическими закономерностями в природе?

10. Каков смысл принципа дополнительности?