Сетезависимые и сетенезависимые уровни

Функции всех уровней модели OSI могут быть отнесены к одной из двух групп: либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями.

Три нижних уровня — физический, канальный и сетевой — являются сетезависимыми, то есть протоколы этих уровней тесно связаны с технической реализацией сети и используемым коммуникационным оборудованием. Например, переход на оборудование FDDI означает полную смену протоколов физического и канального уровней во всех узлах сети.

Три верхних уровня — прикладной, представительный и сеансовый — ориентированы на приложения и мало зависят от технических особенностей построения сети. На протоколы этих уровней не влияют какие бы то ни было изменения в топологии сети, замена оборудования или переход на другую сетевую технологию. Так, переход от Ethernet к высокоскоростной технологии 100VG-AnyLAN не потребует никаких изменений в программных средствах, реализующих функции прикладного, представительного и сеансового уровней.

Транспортный уровень является промежуточным, он скрывает все детали функционирования нижних уровней от верхних. Это позволяет разрабатывать приложения, не зависящие от технических средств непосредственной транспортировки сообщений.

24 Стек протоколов TCP/IP. Уровни стека TCP/IP.

Стек протоколов TCP/IP (англ. Transmission Control Protocol/Internet Protocol) — набор сетевых протоколов разных уровней модели сетевого взаимодействия DOD, используемых в сетях. Протоколы работают друг с другом в стеке (англ. stack, стопка) — это означает, что протокол, располагающийся на уровне выше, работает «поверх» нижнего, используя механизмы инкапсуляции. Например, протокол TCP работает поверх протокола IP.

Стек протоколов TCP/IP основан на модели сетевого взаимодействия DOD и включает в себя протоколы четырёх уровней:

прикладного (application),

транспортного (transport),

сетевого (internet),

уровня доступа к среде (network access).

Протоколы этих уровней полностью реализуют функциональные возможности модели OSI. На стеке протоколов TCP/IP построено всё взаимодействие пользователей в IP-сетях. Стек является независимым от физической среды передачи данных.

Обычно в стеке TCP/IP верхние 3 уровня (прикладной, представительский и сеансовый) модели OSI объединяют в один — прикладной. Поскольку в таком стеке не предусматривается унифицированный протокол передачи данных, функции по определению типа данных передаются приложению. Упрощенно интерпретацию стека TCP/IP можно представить так:

5 Прикладной(«7 уровень») напр., HTTP, RTP, FTP, DNS (RIP, работающий поверх UDP, и BGP, работающий поверх TCP, являются частью сетевого уровня)

4 Транспортный напр., TCP, UDP, SCTP, DCCP (протоколы маршрутизации, подобные OSPF, что работают поверх IP, являются частью сетевого уровня)

3 Сетевой Для TCP/IP это IP (IP) (вспомогательные протоколы, вроде ICMP и IGMP, работают поверх IP, но тоже относятся к сетевому уровню; протокол ARP является самостоятельным вспомогательным протоколом, работающим поверх физического уровня)

2 Канальный Ethernet, IEEE 802.11 Wireless Ethernet, SLIP, Token Ring, ATM и MPLS

1 Физический напр., физическая среда и принципы кодирования информации, T1, E1

25 TCP/IP порты.

Порт - это точка подключения. С точки зрения сетевого обмена порты можно рассматривать как "двери" на обоих концах сетевого соединения, через которое программы типа клиент/сервер или точка-точка пересылают информацию в процессе обмена данными. Всякий раз, когда сетевая программа инициирует взаимодействие с удаленной системой, происходит открытие порта, как на локальной системе, так и на удаленной.

Номера портов разделены на три категории:

известные порты;

зарегистрированные порты;

динамические и/или приватные порты.

Известные порты находятся в диапазоне от 0 до 1023. Они назначаются и контролируются IANA, и обычно используются низкоуровневыми системными программами. Сервисы HTTP, в частности, браузеры и веб-сервера, используют TCP/IP порт 80. Программы FTP работают на портах 20/21.

Зарегистрированные порты - от 1024 до 49151. Они также назначаются и контролируются IANA, но выделяются для частных целей.

Динамические и/или приватные порты - от 49152 до 65535. Эти порты динамические, в том смысле, что они могут быть использованы любым процессом с любой целью. Часто, программа, работающая на зарегистрированном порту (от 1024 до 49151) порождает другие процессы, которые используют эти динамические порты.

26 Требования к компьютерным сетям. Производительность. Надёжность и безопасность.

Потенциально высокая производительность — это одно из основных преимуществ распределенных систем, к которым относятся компьютерные сети. Это свойство обеспечивается принципиальной, но, к сожалению, не всегда практически реализуемой возможностью распределения работ между несколькими компьютерами сети.

Основные характеристики производительности сети:

время реакции;

скорость передачи трафика;

пропускная способность;

задержка передачи и вариация задержки передачи.

 

Важно различать несколько аспектов надежности.

Для сравнительно простых технических устройств используются такие показатели надежности, как:

среднее время наработки на отказ;

вероятность отказа;

интенсивность отказов.

Однако эти показатели пригодны для оценки надежности простых элементов и устройств, которые могут находиться только в двух состояниях — работоспособном или неработоспособном. Сложные системы, состоящие из многих элементов, кроме состояний работоспособности и неработоспособности, могут иметь и другие промежуточные состояния, которые эти характеристики не учитывают.

Для оценки надежности сложных систем применяется другой набор характеристик:

готовность или коэффициент готовности;

сохранность данных;

согласованность (непротиворечивость) данных;

вероятность доставки данных;

безопасность;

отказоустойчивость.

Другим аспектом общей надежности является безопасность (security), то есть способность системы защитить данные от несанкционированного доступа. В распределенной системе это сделать гораздо сложнее, чем в централизованной. В сетях сообщения передаются по линиям связи, часто проходящим через общедоступные помещения, в которых могут быть установлены средства прослушивания линий. Другим уязвимым местом могут стать оставленные без присмотра персональные компьютеры. Кроме того, всегда имеется потенциальная угроза взлома защиты сети от неавторизованных пользователей, если сеть имеет выходы в глобальные общедоступные сети.