Вселенная на булавочной головке (и почему мы не проваливаемся сквозь землю) 2 страница

Мы говорим: «У меня есть два циферблата, и я хочу сочетать их, чтобы получился один, и я мог с его помощью узнать, какова вероятность нахождения двух электронов в точках А и В . Как мне их сочетать?» Не будем забегать вперед с ответом, потому что хотим понять, действительно ли стоит воспользоваться сложением циферблатов. Оказывается, мы не очень‑то свободны в действиях, и, как ни странно, простое сложение циферблатов – это одна из всего двух возможностей.

Чтобы упростить разговор, будем называть циферблат, соответствующий движению частицы 1 в точку А и движению частицы 2 в точку В , циферблатом 1. Это циферблат, который связан с верхней иллюстрацией на рис. 7.3. Циферблат 2 соответствует другой возможности, когда частица 1 приходит в точку В . Важно понять: если мы переведем циферблат 1 до сложения с циферблатом 2, то вычисляемая общая вероятность должна быть такой же, как если бы мы таким же образом перевели циферблат 2 перед его сложением с циферблатом 1.

В доказательство этого можно указать, что перемена наименований А и В в наших диаграммах, очевидно, не может ничего изменить. Это просто иной способ описания одного и того же процесса. Но если поменять А на В и наоборот, то и диаграммы на рис. 7.3 поменяются местами. Это значит, что, если мы решим подкрутить циферблат 1 (соответствующий верхней диаграмме) перед его прибавлением к циферблату 2, это действие должно полностью соответствовать смещению циферблата 2 перед его прибавлением к циферблату 1 после того, как мы поменяли их названия. Это логическое соображение жизненно важно для нас, так что его необходимо довести до сознания. Так как мы предположили, что нет возможности определить разницу между двумя частицами, то можно поменять местами их названия. Это значит, что подведение циферблата 1 должно давать тот же результат, что и такое же подведение циферблата 2, поскольку нет никакой возможности эти циферблаты различить.

Приведенное выше наблюдение нельзя назвать скромным или незначительным: оно имеет очень важные последствия, поскольку существует лишь два возможных способа подведения и уменьшения циферблатов, прежде чем сложить их, в результате чего получится конечный циферблат со свойствами, не зависящими от того, какой из исходных циферблатов подвергся обработке. Это показано на рис. 7.4. Верхняя половина рисунка иллюстрирует, что если подкрутить циферблат 1 на 90° и прибавить его к циферблату 2, то получившийся циферблат будет не равен по размеру тому, который получится, если подкрутить на 90° циферблат 2 и прибавить его к циферблату 1. Это можно видеть, потому что, если сначала подкрутить циферблат 1, то новая стрелка, которая показана здесь пунктиром, будет показывать в противоположном по отношению к стрелке циферблата 2 направлении, таким образом частично отменяя этот циферблат. При смещении же циферблата 2 его стрелка продолжает указывать в том же направлении, что и стрелка циферблата 1, так что они прибавляются, образуя более длинную стрелку.

 

Рис. 7.4. Верхняя часть рисунка показывает, что сложение циферблатов 1 и 2 после смещения циферблата 1 на 90° не эквивалентно их сложению после смещения на те же 90° циферблата 2. Нижняя часть показывает интересную возможность смещения одного из циферблатов на 180° перед сложением

 

Должно быть ясно, что 90° – это не какой‑то особый случай, и другие углы тоже дадут циферблаты, которые зависят от того, который из двух исходных мы предпочли подкрутить.

Очевидное исключение – это перевод стрелки часов на 0°, потому что смещение циферблата 1 на 0° с последующим его сложением с циферблатом 2 – это, разумеется, то же самое, что и смещение циферблата 2 на 0° с последующим его сложением с циферблатом 1. Это значит, что сложение циферблатов без всякого перевода их стрелок – это вполне жизнеспособная возможность. Точно так же подойдет и подведение обоих циферблатов на одну и ту же величину, но это фактически та же ситуация, что и случай «без смещения»: нужно просто переопределить то, что мы будем называть «12 часами». Это равноценно утверждению, что мы всегда можем смещать любой циферблат на определенную величину, если эта величина равна для всех циферблатов. Это никогда не будет оказывать воздействие на те вероятности, которые мы пытаемся подсчитать.

Нижняя часть рис. 7.4 показывает, что, как бы странно это ни звучало, есть еще один способ сочетания циферблатов: мы можем повернуть один из них на 180° с последующим их сложением. Не получается один и тот же циферблат в двух случаях, но размер при этом остается тем же самым, следовательно, это приводит к той же самой вероятности нахождения одного электрона в точке А и другого в точке В .

Подобные рассуждения можно привести и по поводу возможности сжатия или расширения одного из циферблатов перед их сложением, потому что если мы сожмем циферблат 1 на определенную величину, прежде чем прибавить его к циферблату 2, то получаться будет не тот результат, что при сжатии циферблата 2 на ту же величину перед сложением его с циферблатом 1, и исключений у этого правила нет.

Итак, можно сделать интересный вывод. Хотя мы начали с того, что даровали себе полную свободу действий, оказалось, что, поскольку нет возможности отличить частицы друг от друга, есть лишь два способа сочетания циферблатов: мы можем сложить их либо сразу, либо после поворота стрелки одного из них на 180°. И самое замечательное, что природа идет обоими путями.

В случае с электронами перед сложением циферблатов нужно произвести лишний оборот. В случае с фотонами или бозонами Хиггса нужно сложить циферблаты, не прибегая к повороту. Итак, частицы природы делятся на два типа: те, которым нужен лишний оборот, называются фермионами , а те, которые обходятся без него, именуются бозонами .

Что определяет, фермион конкретная частица или бозон? Ее спин. Спин, как можно догадаться по этимологии слова (от англ. spin – «вращать»), – это мера углового момента частицы, и фермионы всегда имеют спин, равный полуцелому числу[34], а у бозонов спин целый. Мы говорим, что у электрона спин равен ½, у фотона – 1, а у бозона Хиггса – 0. Не хотим вдаваться в подробности по поводу спина, потому что они в основном чисто технические. Однако в разговоре о периодической системе оказалось важно, что в результате электроны делятся на два типа в соответствии с двумя возможными значениями их углового момента (спин, направленный вверх, или спин, направленный вниз). Это пример общего правила, которое гласит: частицы со спином s обычно имеют 2s + 1 типов, например частицы со спином ½ (то есть электроны) имеют два типа, со спином 1 – три типа, а со спином 0 – один тип.

Взаимосвязь между угловым моментом частицы и нашим способом сочетания часов известна как теорема Паули, или теорема о связи спина со статистикой. Она выводится в том случае, когда формулировка квантовой теории согласуется со специальной теорией относительности Эйнштейна. Точнее говоря, это прямой результат выполнения причинно‑следственных законов. К сожалению, выведение теоремы о связи спина со статистикой лежит за пределами уровня этой книги – как, честно говоря, и многих других. В «Фейнмановских лекциях по физике» автору пришлось сказать следующее:

 

«Мы просим прощения за то, что неспособны элементарно объяснить вам это. Но объяснение существует, его нашел Паули, основываясь на сложных доводах квантовой теории поля и теории относительности. Он показал, что эти факты по необходимости связаны друг с другом; но мы не в состоянии найти способ воспроизвести его аргументы на элементарном уровне. Это, видимо, одно из немногих мест в физике, когда правило формулируется очень просто, хотя столь же простого объяснения ему не найдено».

 

Вспомнив о том, что Ричард Фейнман вынужден был написать подобное в учебнике университетского уровня, мы можем только поднять руки и сдаться. Но правило само по себе довольно простое, и вам лишь придется поверить нам на слово в его доказательстве: для фермионов поворот необходим, а для бозонов – нет. Судя по всему, поворот служит причиной принципа Паули, а следовательно, и структуры атомов, и теперь, наконец, мы можем дать очень простое объяснение после всей предыдущей кропотливой работы.

Представьте, что точки А и В на рис. 7.3 движутся все ближе и ближе друг к другу. Когда они оказываются совсем близко, циферблат 1 и циферблат 2 должны стать примерно одного размера и показывать примерно одинаковое время. Когда А и В перекрываются, то и циферблаты должны быть идентичными. Это очевидно, поскольку циферблат 1 соответствует частице 1, заканчивающей движение в точке А , а циферблат 2 в этом конкретном случае показывает точно такое же время, поскольку точки А и В перекрываются. Тем не менее циферблатов по‑прежнему два, и мы по‑прежнему должны их сложить. Но тут и возникает тонкость: для фермионов один из циферблатов должен быть перед сложением повернут на 180°. Это значит, что циферблаты всегда будут показывать точно противоположное время для случая совпадения точек А и В (если на одном будет 12 часов, то на другом 6 часов), так что при сложении всегда будет получаться циферблат нулевого размера. Это замечательный результат, поскольку он означает, что вероятность нахождения двух электронов в одной и той же точке всегда будет равна нулю: законы квантовой физики побуждают их избегать друг друга. Чем ближе они друг к другу, тем меньше получающийся циферблат и, соответственно, вероятность такой близости. Это один из способов формулировки знаменитого принципа Паули: электроны избегают друг друга.

Сначала мы собирались показать, что ни одна пара идентичных электронов не может находиться на одном и том же энергетическом уровне в атоме водорода. Мы пока еще окончательно этого не доказали, но замечание о том, что электроны избегают друг друга, разумеется, имеет последствия для атомов и понимания того, почему же мы не проваливаемся сквозь землю. Теперь становится понятно не только то, что электроны в нашей обуви отталкиваются от электронов земной поверхности по правилу отталкивания одноименных зарядов, но и то, что они отталкиваются, потому что естественным образом избегают друг друга в соответствии с принципом Паули. Оказывается, согласно доказательству Дайсона и Ленарда, именно это избегание и не позволяет нам провалиться сквозь землю. Оно же заставляет электроны занимать разные энергетические уровни внутри атомов, определяя их строение, и в итоге служит причиной разнообразия химических элементов, которое мы наблюдаем в природе. Определенно, этот физический закон имеет очень важные для повседневной жизни последствия. В последней главе книги мы расскажем также, как принцип Паули играет ключевую роль в предотвращении гравитационного коллапса некоторых звезд.

В завершение мы должны объяснить, как из того, что ни одна пара электронов не может находиться в одном и том же месте в одно и то же время, следует, что ни у одной пары электронов в атоме не может быть одинаковых квантовых чисел, то есть два электрона не могут иметь одинаковую энергию и спин. Возьмем два электрона с одинаковым спином и докажем, что они не могут пребывать на одном и том же энергетическом уровне. Если бы они находились на одном энергетическом уровне, то каждый по необходимости описывался бы совершенно одинаковым набором циферблатов, распределенных в пространстве (в соответствии с применимой здесь стоячей волной). Для каждой пары точек в пространстве – обозначим их X и Y – есть два циферблата. Циферблат 1 соответствует «электрону 1 в точке Х » и «электрону 2 в точке Y », а циферблат 2 соответствует «электрону 1 в точке Y » и «электрону 2 в точке Х ». Из предыдущих рассуждений мы знаем, что эти циферблаты нужно сложить после перевода одного из них на 6 часов, чтобы вычислить вероятность нахождения одного электрона в точке Х , а другого в точке Y . Но если два электрона обладают одинаковой энергией, то перед решающим дополнительным поворотом циферблаты 1 и 2 должны быть идентичны. После поворота же они будут показывать противоположное время и, как и раньше, при сложении образуют циферблат, не имеющий размера. Это верно для любого конкретного положения точек Х и Y , так что вероятность найти пару электронов в одной и той же конфигурации стоячей волны, то есть обладающих одной и той же энергией, равна нулю. Именно этим в конечном счете и определяется стабильность атомов в нашем организме.

 

Взаимозависимость

 

До этого времени мы уделяли пристальное внимание квантовой физике изолированных частиц и атомов. Мы выяснили, что электроны находятся внутри атомов в определенных энергетических состояниях, известных как стационарные состояния, хотя атом может быть в суперпозиции нескольких подобных состояний. Мы определили также, что электрон может перейти из одного энергетического состояния в другое с сопутствующим испусканием фотона. Испускание фотона, таким образом, свидетельствует о наличии энергетических состояний у атома; мы повсюду видим характерные цвета атомных переходов. Однако наш физический опыт связан с восприятием множества сгруппированных между собой атомов, и уже поэтому пора начать разбираться с тем, что происходит, когда атомы группируются.

Размышления над сочетаниями атомов поведут нас к химическим связям, разнице между проводниками и изоляторами и в конце концов к полупроводникам. Эти интересные материалы обладают свойствами, которые можно использовать для создания мельчайших устройств, способных производить базовые логические операции. Такие устройства называются транзисторами , и при объединении многих миллионов транзисторов можно создать микрочипы. Как мы увидим, теория транзисторов имеет квантовую природу. Трудно понять, как можно было бы изобрести и использовать транзисторы без квантовой теории, а современный мир без них уже нельзя представить. Это замечательный пример научной проницательности: мы столько времени описывали противоречащие интуиции подробности исследований природы, движимых чистым любопытством, и вот оказывается, что они привели к революции в повседневной жизни. Уильям Шокли, один из изобретателей транзистора и глава Группы физики твердого тела в компании Bell Telephone Laboratories, прекрасно показал, чем чреваты попытки классифицировать и контролировать научные знания[35]:

 

«Я хотел бы выразить свою точку зрения на определения, которыми часто пытаются классифицировать типы физических исследований: например, чистая, прикладная, неограниченная, фундаментальная, базовая, академическая, промышленная, практическая физика и т. д. Мне кажется, что слишком часто некоторые слова используются в пренебрежительном смысле: с одной стороны, это принижает практические цели производства полезных вещей, а с другой – отрицает возможное долгосрочное значение исследований в новых отраслях знания, где нельзя предсказать появление полезных результатов. Меня часто спрашивали, например, относится планируемый мной эксперимент к чистой или прикладной науке; я же считаю более важным понять, может ли эксперимент принести новые, желательно остающиеся на века знания о природе. Если получить такие знания удается, то это, на мой взгляд, и есть хорошая фундаментальная наука; и это гораздо более важный показатель, чем то, руководствуется ли экспериментатор жаждой чисто эстетического удовлетворения или пытается повысить стабильность работы транзистора высокого напряжения. Для высшего блага человечества требуется и тот и другой подходы».

 

Поскольку так говорил не кто‑то, а изобретатель едва ли не самого полезного предмета со времен появления колеса, законодателям и управленцам всего мира стоило бы прислушаться к этим словам. Квантовая механика изменила мир, а новые теории, возникающие в наши дни на переднем краю физики, наверняка смогут еще раз изменить нашу жизнь.

Как всегда, мы начнем с начала: от Вселенной с одной частицей перейдем к рассмотрению Вселенной, где частиц будет две. Представьте себе, например, простую Вселенную, состоящую из двух изолированных атомов водорода; два электрона связаны с двумя отдаленными протонами, вокруг которых вращаются по орбите. Через несколько страниц мы начнем сводить их вместе и посмотрим, что получится, но пока предположим, что они расположены очень далеко друг от друга.

Принцип Паули утверждает, что два электрона не могут находиться в одинаковом квантовом состоянии, потому что это не отличимые друг от друга фермионы. Сначала может появиться соблазн заявить, что, если атомы далеко друг от друга, то два электрона должны пребывать в различных квантовых состояниях, так что и говорить тут не о чем. Но все значительно интереснее. Представьте, что мы помещаем электрон 1 в атом 1, а электрон 2 – в атом 2. Через некоторое время утверждение «электрон 1 все еще в атоме 1» не будет иметь смысла. Он может находиться и в атоме 2, потому что всегда есть вероятность того, что электрон совершил квантовый скачок. Как мы помним, все, что может произойти, действительно происходит, и электроны вполне могут за мгновение облететь всю Вселенную. На языке мельчайших циферблатов, даже если начать с того, который описывает один из электронов, расположенный вблизи только одного из протонов, придется в следующий миг ввести уже и циферблат вблизи другого протона. И хотя подразумевается, что циферблаты вблизи второго протона будут очень малы, их размеры все же не равны нулю, так что существует конечная вероятность нахождения там электрона. Чтобы более четко представлять себе последствия принципа Паули, нужно перестать мыслить о двух изолированных атомах и перейти к рассмотрению всей системы в целом: у нас есть два протона и два электрона, и наша задача – понять их самоорганизацию. Упростим ситуацию: пренебрежем электромагнитным взаимодействием между двумя электронами, что будет вполне неплохим приближением, если протоны удалены друг от друга, к тому же на ходе наших рассуждений это почти никак не скажется.

Что мы знаем о разрешенной энергии электронов в двух атомах? Для общей идеи можно обойтись без вычислений – тем, что мы уже знаем. Если протоны находятся очень далеко друг от друга (например, в нескольких километрах), то самая низкая разрешенная энергия для электронов должна обязательно соответствовать ситуации, когда они связаны с протонами и образуют два изолированных атома водорода. В этом случае велик соблазн сделать вывод, что самое низкое энергетическое состояние для всей системы с двумя протонами и двумя электронами будет соответствовать двум атомам водорода, которые находятся в своих самых низких энергетических состояниях и полностью игнорируют друг друга. Но каким бы верным это ни казалось, на самом деле это не может быть верным. Мы должны мыслить о системе в целом, а эта система из четырех частиц, как и изолированный атом водорода, должна иметь собственный уникальный спектр разрешенных энергий электрона. И принцип Паули подсказывает, что электроны не могут одновременно быть на совершенно одинаковом энергетическом уровне вблизи каждого протона, находясь в блаженном неведении по поводу существования друг друга[36].

Кажется, мы должны заключить, что пара идентичных электронов в двух отдаленных атомах водорода не может обладать одинаковой энергией, но мы также сказали, что ожидаем нахождение электронов на самом низком энергетическом уровне, соответствующем идеализированному, полностью изолированному атому водорода. Оба этих утверждения не могут быть истинными, и, немного подумав, можно понять, каким должен быть выход из положения: в идеализированном и изолированном атоме водорода должны быть два энергетических уровня, а не один, как мы предполагали изначально. Таким образом мы сможем уместить на нем два электрона и не нарушить принципа Паули. Разница между этими двумя энергиями должна быть очень мала, если атомы сильно удалены друг от друга, так что мы можем представить, что атомы не обращают друг на друга внимания. Но на самом деле они не забывают о существовании друг друга, и все из‑за вездесущего принципа Паули: если один из электронов находится в одном энергетическом состоянии, то второй электрон должен пребывать в другом, отличном от первого, энергетическом состоянии, и эта тесная связь между двумя атомами сохраняется независимо от того, насколько они удалены друг от друга.

Та же логика распространяется не только на систему из двух атомов: если по Вселенной рассеяны 24 атома водорода, то на каждое энергетическое состояние в мире единственного атома будет приходиться 24 энергетических состояния, принимающих схожие, но не равные друг другу значения. Когда электрон в одном из атомов занимает некое конкретное состояние, он при этом «знает» все состояния оставшихся 23 электронов, как бы далеко те ни находились. Итак, каждый электрон во Вселенной осведомлен о состоянии каждого другого электрона. И останавливаться на электронах необязательно: протоны и нейтроны тоже можно считать фермионами, так что каждый протон знает о других протонах и каждый электрон знает о других электронах. Связь между частицами, из которых состоит наша Вселенная, настолько тесна, что распространяется на всю Вселенную. Связь эта эфемерна в том смысле, что для сильно отдаленных частиц разница энергий настолько мала, что не оказывает сколь‑нибудь существенного воздействия на нашу повседневную жизнь.

Это одно из самых странно звучащих утверждений, к которым мы пришли на страницах книги. Кажется, что заявление о взаимосвязи каждого атома во Вселенной с каждым другим – это брешь, через которую может прорваться всякая холистическая бессмыслица. Но на самом деле здесь нет ничего, с чем бы мы не встречались до этого. Вспомните прямоугольную потенциальную яму, рассматриваемую в главе 6. Ширина ямы определяет разрешенный спектр энергетических уровней, и с изменением размера ямы изменяется и спектр энергетических уровней. То же верно и в данном случае: форма ямы, в которой находятся наши электроны, а следовательно, энергетические уровни, которые им разрешено занимать, определяется положением протонов. Если протонов два, то энергетический спектр определяется положением обоих. А если мы имеем дело с 1080 протонов, формирующих Вселенную, то положение любого из них влияет на форму ямы, в которой находятся 1080 электронов. Существует лишь один набор энергетических уровней, и когда что‑то меняется (например, электрон переходит с одного энергетического уровня на другой), то все остальное должно немедленно перестроиться, так чтобы ни одна пара фермионов не оказалась на одинаковом энергетическом уровне.

Идея о том, что электроны немедленно «узнают» все друг о друге, на первый взгляд противоречит теории относительности Эйнштейна. Возможно, мы можем создать какой‑то сигнальный аппарат, который будет использовать эти моментальные коммуникации для перемещения информации на скорости выше скорости света. Эта, казалось бы, парадоксальная черта квантовой теории впервые получила оценку в 1935 году – Эйнштейном вместе с Борисом Подольским и Натаном Розеном: Эйнштейн назвал ее «зловещими действиями на расстоянии» и в целом невзлюбил. Прошло определенное время, прежде чем физики осознали, что, несмотря на всю зловещесть, для переноса информации быстрее скорости света эти дальнобойные соответствия использовать нельзя, так что закону причинно‑следственных связей ничто не угрожает.

Подобное нездоровое умножение энергетических уровней происходит не по каким‑то эзотерическим причинам – это физическое обоснование химических связей. Кроме того, это ключевая причина того, почему одни материалы проводят электричество, а другие нет, а также подспорье в объяснении работы транзистора. Начнем наш путь к транзистору с возвращения к тому «упрощенному» атому, который известен нам из главы 6, где электрон удерживался в потенциальной яме. Эта простая модель не давала возможности верно вычислить энергетический спектр для атома водорода, но научила нас многому в области поведения отдельного атома. Хорошо послужит она и здесь. Возьмем две соединенные прямоугольные ямы и сделаем из них модель двух смежных атомов водорода. Сначала обсудим случай движения одиночного электрона в потенциале, созданном двумя протонами. Верхняя иллюстрация на рис. 8.1 показывает происходящее. Потенциал остается ровным, а потом ныряет вниз, образуя две ямы, что соответствует воздействию двух протонов, удерживающих электроны. Достаточный отступ в центре позволяет удерживать электрон и в левую, и в правую сторону. На техническом жаргоне говорят, что электрон движется в двухъямном потенциале .

.

Рис. 8.1. Сверху изображен двухъямный потенциал, а снизу – четыре интересные волновые функции, описывающие электрон в этом потенциале. Только две нижние функции соответствуют электрону с определенной энергией

 

Наша первая задача – с помощью этой модели понять, что происходит, когда мы сводим два атома водорода: мы увидим, что, когда они в достаточной мере сближаются, образуется молекула. После этого поразмышляем над системами, состоящими более чем из двух атомов, что позволит оценить, что происходит внутри твердого тела. Если ямы очень глубоки, можно воспользоваться результатами из главы 6 и определить, чему должны соответствовать наименьшие электронные состояния. Для одиночного электрона в одиночной прямоугольной яме самое низкое электронное состояние описывается волной‑синусоидой, длина которой в два раза превышает размер ящика. Следующему за ним состоянию соответствует синусоида, равная по длине размеру ящика, и т. д. Если поместить электрон в одну часть двойной ямы и если эта яма достаточно глубока, разрешенные энергии должны быть близки по значению к значениям для электрона, удерживаемого в одиночной глубокой яме, так что волновая функция будет очень напоминать синусоиду.

Однако наше внимание сейчас будет приковано к незначительным различиям между идеально изолированным атомом водорода и атомом водорода в удаленной друг от друга паре.

Можно с уверенностью ожидать, что две верхние волновые функции, изображенные на рис. 8.1, соответствуют функциям для одиночного электрона, расположенного в левой или правой яме (помните, что слова «атом» и «яма» в данном случае взаимозаменяемы). Волны – почти синусоиды, их длина равняется двойной ширине ямы. Поскольку волновые функции идентичны по форме, можно сказать, что они должны соответствовать частицам одинаковой энергии. Но это не может быть верным, потому что, как мы уже говорили, должна быть очень небольшая вероятность, что электрон может перескочить из одной ямы в другую независимо от того, насколько глубоки эти ямы и как они удалены друг от друга. Мы намекнули на эту возможность, изобразив некоторое «просачивание» волн‑синусоид через стенки ямы, что отражает как раз ту незначительную вероятность нахождения ненулевых циферблатов в соседней яме.

То, что у электрона всегда есть конечная возможность перескочить из одной ямы в другую, означает, что две верхние волновые функции на рис. 8.1 не могут соответствовать электрону с определенной энергией, потому что из главы 6 нам известно, что такой электрон описывается стоячей волной, форма которой не меняется со временем, или набором циферблатов, размеры которых не меняются со временем. Если с течением времени в изначально пустой яме образуются новые циферблаты, форма волновой функции, разумеется, также изменяется. Итак, состояние определенной энергии соответствует двойной яме? Ответ таков: состояния должны быть более демократичными, выражая равную возможность обнаружения электрона в любой из ям. Это единственный способ образовать стоячую волну и не дать волновой функции метаться туда‑сюда, от одной ямы к другой.

Две нижние волновые функции с рис. 8.1 как раз обладают этим свойством. Именно так и выглядят самые низкие энергетические состояния. Это единственные представимые стационарные состояния, которые выглядят как одноямные волновые функции для каждой индивидуальной ямы и при этом описывают электрон, с одинаковой вероятностью находящийся в любой из ям. Это и есть те два энергетических состояния, которые, как мы выяснили, могут присутствовать, если поместить два электрона на орбиту вокруг двух удаленных протонов и получить два почти идентичных атома водорода в соответствии с принципом Паули. Если один электрон описывается одной из двух этих волновых функций, то другой электрон должен описываться второй – так требует принцип Паули[37].

Если ямы достаточно глубоки или атомы достаточно удалены, то две энергии будут почти равны, при этом они станут почти равны самой низкой энергии частицы, удерживаемой в одиночной изолированной яме. Не нужно беспокоиться по поводу того, что одна из волновых функций словно бы встала с ног на голову: не забывайте, что при определении вероятности найти частицу в каком‑либо месте значение имеет только размер циферблата. Иными словами, мы можем обратить все нарисованные в этой книге волновые функции и при этом нисколько не изменить их физического содержания. «Частично вставшая на голову» волновая функция (на рисунке она подписана как «антисимметричное энергетическое состояние») поэтому продолжает описывать равную суперпозицию электрона, удерживаемого в левой яме, и электрона, удерживаемого в правой яме. Но важно заметить, что симметричная и антисимметричная волновые функции не полностью совпадают (и не должны, а то Паули бы расстроился). Чтобы убедиться в этом, достаточно посмотреть на поведение этих двух волновых функций самой низкой энергии в области между ямами.