Характеристика фазовых и структурных составляющих железоуглеродистых сплавов

 

В соответствии с ранее данными определениями фазовой и структурной составляющих системы, в системе железо-углерод к фазовым составляющим относятся: жидкий раствор (L), твердые растворы: феррит (α), аустенит (γ) , высокотемпературный феррит (δ), а также цементит и графит (Г).

Жидкий раствор в системе железо-углерод представляет собой раствор углерода в расплавленном железе. При температурах значительно выше линии ликвидус (преимущественно выше 1700˚С) жидкость является статистически неупорядоченным раствором со статистически плотной упаковкой. При небольшом перегреве выше линии ликвидус жидкий раствор имеет сравнительно регулярное строение. Жидкий раствор, образовавшийся при плавлении δ-феррита (до 0,51% углерода), сохраняет ближний порядок по ОЦК-решетке δ-железа. Жидкий раствор, образующийся при плавлении аустенита, имеет ближний порядок, соответствующий ГЦК-решетке γ -железа.

Феррит – это твердый раствор внедрения углерода в α-железе. Решетка феррита – объемно-центрированный куб с расположением атомов углерода в сравнительно небольших октаэдрических пустотах решетки (рисунок 4.4), сильно искажающим ее. Растворимость углерода в феррите невелика.

    Рисунок 4.4. Позиции ионов углерода С4+ в октаэдрических пустотах ОЦК решетки

При температуре 727 ˚С в феррите растворяется 0,02% С; при понижении температуры растворимость уменьшается, достигая величины 0,006%С при комнатной температуре. Структура феррита представляет собой сравнительно равноосные полиэдрические кристаллы, разделенные между собой тонкими высокоугловыми границами. Выявляется обычно структура феррита при травлении растворами азотной кислоты.

Феррит до температуры точки Кюри (770˚С) сильно ферромагнитен, хорошо проводит тепло и электрический ток. В равновесном состоянии феррит пластичен (относительное удлинение порядка 40%), имеет небольшую прочность и твердость (HB = 65 - I30, в зависимости от величины зерна).

Феррит, в зависимости от характера протекающих фазовых превращений, в структуре железоуглеродистых сплавов может находиться в виде различных структурных состояний: феррит, как основа структуры сплава (Ф); феррит, как вторая (избыточная) фаза, располагающаяся по границам перлитных колоний, в виде отдельных включений равноосной или игольчатой формы; феррит, входящий в качестве фазы в состав другой структурной составляющей – перлита или феррито-графитного эвтектоида.

При температурах выше критической точки А4 стабильной становится модификация высокотемпературного δ–феррита, имеющего, как и низкотемпературный α–феррит, объемно-центрированную кубическую решетку, но с большими по сравнению с ним параметрами. δ -феррит парамагнитен.

Аустенит – твердый раствор внедрения углерода в γ-железе. Решетка аустенита – гранецентрированный куб (ГЦК). Атомы углерода располагаются в крупных октаэдрических пустотах решетки (рисунок 4.5).

    Рисунок 4.5. Позиции ионов углерода С4+ в октаэдрических пустотах ГЦК решетки γ-железа

Растворимость углерода в аустените значительно больше, чем в феррите: 2,03 и 2,14% при температурах эвтектического превращения, соответственно, в стабильной и метастабильной системе. При понижении температуры растворимость уменьшается до 0,69 и 0,80% в упомянутых системах, что соответствует температурам эвтектоидного превращения в той и другой системах.

Аустенит в структуре выявляется так же, как и феррит в виде сравнительно равноосных полиэдров, но отличается от него значительным количеством двойников в теле зерна. Аустенит – парамагнитная составляющая во всем температурном интервале его существования. Аустенит мягок, хотя тверже феррита (HB = 200-250). Он пластичен (относительное удлинение 40-50% и выше). Превращение феррита и феррито-цементитной смеси в аустенит сопровождается уменьшением объема.

Структурное состояние аустенита (А) в железоуглеродистых сплавах аналогично ферриту: он может быть единственной структурной составляющей в сплаве; составлять основу сплава; входить в него, как остаточный аустенит; содержаться в виде фазовой составляющей в составе более сложной структурной составляющей – эвтектической аустенито-цементитной смеси (ледебурита), существующей при температурах выше эвтектоидной линии на диаграмме железо-углерод.

Цементит – метастабильное соединение железа с углеродом, соответствующее формуле Fe3C. Цементит имеет сложную орторомбическую решетку (рисунок 4.6), основа которой представляет собой трехгранную, слегка искаженную призму, образованную шестью атомами железа. Часть атомов железа имеет 11 соседних атомов железа, а часть – 12. Пустоты заполняются атомами углерода. В этом структура цементита близка по своему строению к структуре аустенита, а также к плотнейшей гексагональной модификации ε – железа.

  Рисунок 4.6. Позиции ионов углерода и железа в структуре цементита

Цементит – соединение практически постоянного состава. Растворимость железа в цементите имеет место, но ее величина очень мала, и практически незначима. Цементит при повышении температуры сравнительно легко разлагается на железо (аустенит или феррит) и графит. Это свойство цементита лежит в основе явления графитизации, и используется для получения серых и ковких чугунов. Цементит хрупок, очень тверд (НВ около 800), слабо магнитен до температуры 210˚С. Выше этой температуры цементит парамагнитен.

Структурное состояние цементита определяется, в основном, типом превращения, при котором он образуется. Различают первичный цементитI), который представляет собой крупные игольчатые кристаллы, образующиеся при кристаллизации непосредственно из жидкости в заэвтектическом белом чугуне. Вторичный цементитII) выделяется в заэвтектоидных сталях и доэвтектических чугунах, в основном, в виде сетки по границам зерен аустенита, а также в ряде случаев в виде равномерно распределенных по объему аустенитного зерна скоагулированных частиц или игл. Вторичный цементит – это избыточная фаза в железоуглеродистых сплавах, выделяющаяся из аустенита при охлаждении в результате уменьшения растворимости углерода в аустените при понижении температуры.

Выделение третичного цементитаIII) характерно для технического железа и малоуглеродистой стали. Выделяется третичный цементит из феррита в результате уменьшения растворимости углерода в феррите с понижением температуры от 727˚С до комнатной температуры. Третичный цементит в структуре железа и малоуглеродистой стали в микроструктуре наблюдается в виде тонких прожилок по границам зерен феррита. Такие выделения третичного цементита охрупчивают железо и малоуглеродистые стали. Поэтому такие сплавы подвергают термической обработке с целью изменения структурного состояния третичного цементита. Желательное его положение в структуре сплава – равномерно рассредоточенные выделения в объеме ферритных зерен. Этого добиваются путем закалки и старения.

Кроме того, цементит в качестве фазовой составляющей входит в состав сложных двухфазных структурных составляющих в железо-углеродистых сплавах – перлита и ледебурита. В этом случае такой цементит называют эвтектоидным и эвтектическимэ), соответственно.

Графит – важнейшая фазовая и структурная составляющая (Г) серых, ковких и высокопрочных чугунов, обусловливающая их малую усадку при кристаллизации, высокие антифрикционные свойства, малую изнашиваемость, большое внутренние трение, обеспечивающее уменьшение вибраций, и ряд других полезных свойств. Графит – гексагональная модификация углерода. При нормальном давлении графит является стабильной составляющей до температур около 4000˚С.

В решетке графита атомы расположены слоями с гексагональной симметрией (рисунок 4.7). В первом и третьем слоях атомы расположены друг над другом. Во втором (среднем) слое атомы сдвинуты вдоль наибольшей диагонали шестигранника на величину параметра решетки (длину стороны шестигранника). Расстояние между слоями (3,35 кХ) значительно больше, чем расстояния между соседними атомами в гексагональном слое. Из-за легкой подвижности слабо связанных гексагональных слоев графит – наименее прочная фаза железоуглеродистых сплавов.

    Рисунок 4.7. Расположение атомов углерода в слоистой гексагональной решетке графита: сплошные линии –расположение атомов и связей в 1-м и 3-м гексагональных слоях, штриховые – в среднем, 2-м слое

Графит в структуре железоуглеродистых сплавов находится либо в виде избыточной фазы (в заэвтектическом сером чугуне), либо в качестве фазовой составляющей, входящей в состав аустенито-графитной эвтектики. Графит имеет форму разветвленных крабовидных включений. Эвтектический графит отличается от первичного меньшими размерами и большей разветвленностью.

После модифицирования жидкого чугуна магнием и некоторыми другими элементами, а также после отжига белого чугуна на ковкий, в структуре можно наблюдать глобулярный (хлопьевидный или шаровидный) графит. Эта форма графита обеспечивает получение повышенной прочности и пластичности чугуна.

Все описанные фазовые составляющие могут одновременно быть и структурными составляющими, если они в структуре сплава находятся в виде избыточных фаз или составляют основу структуры сплава.

Кроме однофазных структурных составляющих в железоуглеродистых сплавах имеют место и сложные двухфазные: перлит, ледебурит, графито-аустенитная эвтектика и феррито-графитный эвтектоид.

Перлит – это эвтектоидная физико-химическая смесь двух фаз: феррита и цементита, образовавшаяся в метастабильной системе железо-углерод за счет диффузионного расслоения аустенита по эвтектоидной реакции. Перлит образуется при переохлаждении аустенита ниже линии PSK диаграммы железо-углерод. Строение перлита определяется величиной переохлаждения, при котором происходит распад.

При малом переохлаждении (на 20-30 ˚С ниже линии эвтектоидного превращения) образуется зернистый перлит. Зернистый перлит представляет собой феррито-цементитную структуру, в которой основой является феррит, а по его объему статистически равномерно распределены зернистые, близкие к сферическим, включения цементита.

При большем переохлаждении образуется структура пластинчатого перлита, состоящего из регулярно чередующихся пластин цементита и феррита, причем, пластины феррита примерно в 7 раз толще пластин цементита.

Абсолютные значения толщины цементитных и ферритных пластин, величина расстояния между одноименными пластинами в составе эвтектоидной смеси, называемая межпластиночным расстоянием, и характеризующая степень дисперсности структуры, определяются степенью переохлаждения аустенита ниже равновесной температуры эвтектоидной реакции. Чем больше степень переохлаждения, тем выше дисперсность феррито-цементитной эвтектоидной смеси. Высокодисперсные феррито-цементитные смеси носят названия сорбит и троостит. Троостит наиболее дисперсная феррито-цементитная смесь.

Перлит присутствует в структуре сталей и чугунов. Количество перлита растет в доэвтектоидных сталях с увеличением содержания углерода от 0,02 до 0,8%. Эвтектоидная сталь имеет чисто перлитную структуру (100% перлита).

Дальнейшее увеличение содержания углерода в стали, соответствующее переходу к заэвтектоидным сталям, а далее – к чугунам, сопровождается уменьшением доли перлита в структуре за счет появления и увеличения количества вторичного, эвтектического и, наконец, первичного цементита.

Перлит в малоуглеродистых сталях появляется сначала в виде отдельных включений между зернами феррита, затем при увеличении его количества, он постепенно занимает в структуре все большее поле зрения на поверхности шлифа. Пока перлита в структуре мало, строение его не выявляется при малых и средних увеличениях оптического микроскопа. В эвтектоидной и заэвтектоидной сталях пластинчатое строение его выявляется уже при небольших увеличениях (×100 - 200). В структуре чугуна перлит находится как в виде избыточных колонийных структурных составляющих – продуктов распада избыточного аустенита, так и в составе ледебурита. Механические свойства перлита определяются его структурным состоянием. Расчет по правилу аддитивности твердости перлита, исходя из известных значений твердости феррита и цементита, дает значения 150-180 НВ. Экспериментально определенные значения твердости пластинчатого перлита, сорбита и троостита соответственно равны 170 - 230, 230 - 330 и 330 - 400 НВ. Таким образом, можно видеть, что чем выше степень дисперсности феррито-цементитной смеси, тем выше его твердость.

Ледебурит – эвтектическая физико-химическая смесь аустенита и цементита, образующаяся в результате эвтектической кристаллизации из жидкости, содержащей 4,3% углерода.

Ледебурит представляет собой колонийную структуру, основу которой составляют пластины цементита, проросшие разветвленными кристаллами аустенита. Ветви аустенита в составе ледебурита располагаются регулярно по всему объему эвтектической цементитной пластины и имеет форму стержней примерно цилиндрической конфигурации. На шлифе колония ледебурита в зависимости от направления поверхности шлифа относительно аустенитных ветвей может выглядеть либо в виде «зернистой» смеси при поперечном сечении колонии, либо «пластинчатой» - при продольном сечении. При сечении колонии под углом к плоскости базиса цементита, сечения аустенитных ветвей в составе ледебурита эллиптической конфигурации.

Кроме колонийного (сотового) ледебурита эвтектическая смесь аустенита и цементита может встречаться в виде пластинчатой эвтектики, представляющей собой пакет тонких цементитных пластинок, разделенных аустенитом. Такие пакеты образованы двумя переплетенными кристаллами цементита и аустенита. Вероятность образования пластинчатого ледебурита увеличивается с ростом степени переохлаждения жидкости при кристаллизации. При этом увеличивается доля пластинчатого ледебурита в структуре белого чугуна. Чаще всего пакет пластинчатого ледебурита составляет основу, на которой зарождается и растет колония сотового ледебурита.

При очень больших скоростях охлаждения весь ледебурит может оказаться пластинчатым. В этом случае цементит разветвляется, приобретая вид веерообразных колоний. При еще больших скоростях охлаждения появляются сферолитные колонии. Ледебурит, состоящий из эвтектической смеси аустенита и цементита, устойчив в температурном интервале от эвтектической до эвтектоидной линии на диаграмме железо-углерод. При понижении температуры ниже 727 ˚С аустенит в составе ледебурита претерпевает эвтектоидное превращение, в результате чего при комнатной температуре ледебурит представляет собой эвтектическую смесь перлита с цементитом. Строение перлита в ледебурите такое же, как и в сплавах с меньшим содержанием углерода (сталях).

Ледебурит, как и цементит, образующий его основу, тверд, износостоек и обладает практически нулевой пластичностью. Эти свойства ледебурита лежат в основе использования такой структуры в белых чугунах, используемых в качестве одних из наиболее износостойких материалов.

Аустенито-графитная эвтектика образуется в стабильной системе железо-углерод и представляет собой смесь кристаллов графита, сформировавшуюся при одновременном выделении из жидкости состава 4,25% углерода обеих фазовых составляющих. При малых степенях переохлаждения графит эвтектики имеет, как и первичный графит, разветвленную пластинчатую форму. Увеличение скорости охлаждения приводит к расщеплению графитных пластин и образованию сферических кристаллов. Эвтектическая аустенито-графитная структура мало отличается от выделения первичных кристаллов графита. Главное отличие этих структур заключается в размере графитных включений. Они в эвтектике мельче первичных кристаллов.

Феррито-графитный эвтектоид – продукт эвтектоидного распада аустенита, содержащего 0,69% углерода, который реализуется в условиях очень медленного охлаждения при температурах ниже 738˚С.

Феррито-графитный эвтектоид – дисперсная смесь феррита, составляющего основу структуры сплава, и дисперсных разветвленных или сферических графитных частиц, распределенных в феррите статистически равномерно. Однако в большинстве случаев эвтектоидный графит при распаде аустенита осаждается на ранее образовавшихся первичных и эвтектических графитных кристаллах. Эвтектоидное превращение с образованием феррито-графтного эвтектоида используется при термической обработке чугунов и графитизированной стали для получения феррито-графитной структуры, обладающей хорошими антифрикционными свойствами при сохранении достаточно высокой пластичности сплавов.