Устройство полупроводниковых диодов

Подавляющее большинство полупроводниковых диодов представляет собой струк­туру, состоящую из областей n-типа и р-типа, имеющих различную концентра­цию примеси и разделенных электронно-дырочным переходом. Область с высо­кой концентрацией примеси (порядка 1018 см-3) называют эмиттером, область с низкой концентрацией примеси (порядка 1014-1016 см-3) называют базой. Суще­ствуют различные методы создания электронно-дырочных структур.

При изготовлении p-n-структуры методом вплавления в кристалл германия со слабо выраженной электронной электропроводностью вплавляют таблетку индия, галлия или бора. В процессе термической обработки таблетка и прилегающий к ней слой германия расплавляются, и германий растворяется в расплавленной при­меси. После остывания на поверхности кристалла образуется тонкий слой герма­ния с резко выраженной дырочной проводимостью. Электронно-дырочный пере­ход в этом случае получается резким.

При изготовлении диода диффузионным методом на поверхности кремниевой пластины со слабо выраженной электронной электропроводностью методом ваку­умного напыления создают слой алюминия. В процессе термической обработки атомы алюминия диффундируют вглубь кристалла, в результате чего образуется слой с дырочной проводимостью. Особенностью диодов, полученных этим спо­собом, является то, что концентрация введенной примеси уменьшается с глуби­ной, поэтому р-n-переход получается плавным.

При изготовлении диодов методом эпитаксиального наращивания на кремниевую пластину с определенным типом электропроводности осаждают атомы кремния из паров хлорида кремния, содержащего донорную или акцепторную примесь. Осаждающиеся атомы повторяют кристаллическую структуру кремниевой плас­тины, в результате чего образуется монокристалл, одна часть которого имеет элек­тронную проводимость, другая — дырочную.

Существуют также точечные диоды, у которых в хорошо отшлифованную пласти­ну германия или кремния с электронной электропроводностью упирается металли­ческая игла. В процессе производства контакт иглы с полупроводником подвер­гают электрической формовке, которая заключается в пропускании через контакт мощных импульсов тока. При этом происходит местный разогрев контакта, и кон­чик иглы сплавляется с полупроводником, что обеспечивает стабильность и меха­ническую прочность контакта. Кроме того, в процессе формовки часть материала иглы диффундирует в полупроводник, образуя под точечным контактом полусфе­рическую область с дырочной электропроводностью.

Независимо от способа изготовления полупроводникового диода концентрация примеси в базе всегда меньше, чем в эмиттере, поэтому электронно-дырочный переход оказывается сдвинутыми в область базы, то есть является несимметрич­ным. Вследствие низкой концентрации примеси база обладает значительным сопротивлением r’б. Ширина базы W6 во многих случаях оказывается меньше диф­фузионной длины дырок LP.

На рис. 3.1 показана р-n-структура, изготовленная по комбинированной техноло­гии, широко используемой при производстве интегральных схем. На кремниевой подложке n+-типа выращивают эпитаксиальный слой n-типа. Затем поверхность выращенного слоя окисляют, в результате чего образуется слой SiO2 толщиной около 1 мкм, в котором создают окна и через них методом диффузии вводят акцеп­торную примесь, изменяющую тип электропроводности выращенного кристалла. В результате образуется р+-слой с высокой концентрацией примеси, отделенный от n-области электронно-дырочным переходом. Затем осуществляют омические контакты с n+- и р+-областями путем напыления алюминия. В процессе изготовле­ния на кремниевой пластине создается большое количество одинаковых р-n-структур. Такую пластину разделяют на отдельные кристаллики, каждый из которых монтируют в герметичном металлическом, пластмассовом или стеклянном корпусе, защищающем кристалл от воздействия окружающей среды, а базу и эмиттер через омические контакты соединяют с внешними выводами.