Основные достоинства оптоэлектронных приборов

Область применения полупроводниковых оптоэлектронных устройств очень обширна. Они применяются в средствах индикации измерении в системах беспроводного дистанционного управления и телеметрии в качестве развязки различных электрических цепей и управления силовой нагрузкой, на АЭС ГРЭС ТЭЦ. В оборудовании по перекачке нефти и газа. на железнодорожном транспорте и в авиации

Главные достоинства полупроводниковых оптоэлектронных устройств:

малые габариты и вес;

низкое энергопотребление (низкий ток управления и потребления малые напряжения);

высокое быстродействие;

высокий КПД.

Приборы оптоэлектроники:

- Для преобразования света в электрический ток — фото-сопротивления (фоторезисторы), фотодиоды (pin, лавинный), фототранзисторы, фототиристоры, пироэлектрические приёмники, приборы с зарядовой связью (ПЗС), фотоэлектронные умножители (ФЭУ).

- Для преобразования тока в световое излучение — различного рода лампы накаливания, электролюминесцентные индикаторы, полупроводниковые светодиоды и лазеры (газовые, твердотельные, полупроводниковые).

- Для изоляции электрических цепей (последовательного преобразования «ток-свет-ток») служат отдельные устройства оптоэлектроники — оптопары — резисторные, диодные, транзисторные, тиристорные, оптопары на одно-переходных фототранзисторах и оптопары с открытым оптическим каналом.

- Для применения в различных электронных устройствах служат оптоэлектронные интегральные схемы — интегральные микросхемы, в которых осуществляется оптическая связь между отдельными узлами или компонентами с целью изоляции их друг от друга (гальванической развязки).

68. Светодиоды: принцип действия, основные характеристики, эквивалентные схемы

Светодиод или светоизлучающий диод (СД, СИД, LED англ. Light-emitting diode) — полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава использованного в нем полупроводника.

Как и в любом полупроводниковом диоде, в светодиоде имеется p-n переход. При пропускании электрического тока в прямом направлении, носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Не всякие полупроводниковые материалы эффективно испускают свет при рекомбинации. Лучшие излучатели относятся к прямозонным полупроводникам (то есть таким, в которых разрешены прямые оптические переходы зона-зона), типа AIIIBV (например, GaAs или InP) и AIIBVI (например, ZnSe или CdTe). Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS).

Одним из основных параметров светодиодов является: яркость — величина, равная отношению силы света к площади светящейся поверхности (измеряется в канделах на квадратный метр).

Спектральная характеристика светодиода выражает зависимость интенсивности излучения от длины волны излучаемого света и дает представление о цвете свечения светодиода. Длина волны излучаемого света определяется разностью энергий двух энергетических уровней, между которыми происходит переход электронов на излучательном этапе процесса рекомбинации и определяется исходным полупроводниковым материалом и легирующими примесями.

Излучение светодиода также характеризуется диаграммой направленности (угол половинной яркости), которая определятся конструкцией светодиода, наличием линзы и оптическими свойствами защищающего кристалл материала (измеряется в градусах). Излучение светодиода может быть узконаправленным или рассеянным.