ИССЛЕДОВАНИЕ ОДНОФАЗНЫХ ВЫПРЯМИТЕЛЕЙ С ФИЛЬТРАМИ

БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ ПОЛИТЕХНИЧЕСКАЯ АКАДЕМИЯ

 

 

Кафедра «Электротехника и электроника»

 

ЛАБОРАТОРНЫЕ РАБОТЫ (ПРАКТИКУМ)

по курсу «Промышленная электроника»

для студентов специальностей Т.01.01, Т.01.03 Т.11.02

 

 

Минск 2000


УДК 621.38

 

 

Лабораторный практикум предназначен в качестве учебного пособия по курсу «Промышленная электроника» для студентов энергетических специальностей Т.01.01.00 – «Электроэнергетика», Т.01.03.00 – «Автоматизация и управление энергетическими процессами» и специальности Т.11.02.00 – «Автоматизированный электропривод». Содержание практикума соответствует действующей программе курса и включает четырнадцать лабораторных работ. Работы предусматривают расчетную и экспериментальную части. Предварительный расчет к эксперименту студенты должны выполнять в период самостоятельной подготовки к работе, затем проверить полученные результаты опытным путем, провести дополнительные экспериментальные исследования.

К печати работы подготовили: Розум Т.Т. – № 1, 2; Пекарчик Л.С. - № 3; Новаш И.В. - № 4, 13; Домников С.В. - № 5; Климович Г.С. - № 6, 7, 12; Пекарчик А.С. - № 8; Бладыко Ю.В. - № 9, 10, 11; Силюк В.Ф. - № 14.

 

Составители:

Ю.В.Бладыко, С.В.Домников, Г.С.Климович, И.В.Новаш, А.С.Пекарчик, Л.С.Пекарчик, Т.Т.Розум, В.Ф.Силюк

 

 

Рецензент М.И.Полуянов

 

Белорусская государственная

политехническая академия, 2000

 


Лабораторная работа №1

 

ИССЛЕДОВАНИЕ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ И ТИРИСТОРОВ

 

Цель работы: выяснение механизма образования n-p перехода; снятие вольтамперных характеристик выпрямительного диода и стабилитрона; ознакомление с принципом действия тиристора и снятие его основных характеристик.

 

Общие сведения

 

К полупроводниковым относятся материалы, которые при комнатной температуре имеют удельное сопротивление r=10-3... 1010 Ом× см, зависящее от температуры, освещенности, ионизирующего излучения, электрического поля и др.

Для изготовления полупроводниковых приборов применяют простые полупроводниковые вещества - германий, кремний, селен - и некоторые химические соединения, например, арсенид галлия GaAs, антимонид индия InSb, фосфид индия InP, карбид кремния SiC.

Полупроводники имеют кристаллическую структуру, которая однородна при температуре абсолютного нуля. По мере нагрева часть валентных связей нарушается вследствие тепловых колебаний в кристаллической решетке, что приводит к одновременному образованию свободных электронов и незаполненных связей (дырок). Генерация пар носителей заряда может происходить также под действием света, электрического поля, излучения и др. Электропроводность собственного полупроводника, обусловленную парными носителями заряда (электронами и дырками), называют собственной. Вводя в собственный полупроводник примеси, получают примесную электропроводность. Донорные примеси, атомы которых отдают электроны, образуют полупроводники с преобладающей электронной электропроводностью (n-типа). Полупроводники с преобладающей дырочной электропроводностью называют полупроводниками p-типа, а соответствующие примеси - акцепторами.

Область на границе контакта двух полупроводников с противоположным типом электропроводности называется электронно-дырочнымили n-p-переходом. Переход обладает несимметричной проводимостью, т. е. имеет нелинейное сопротивление. Работа большинства полупроводниковых приборов (диодов, тиристоров и др.) основана на использовании свойств n-p-переходов.

Рассмотрим процессы в n-p-переходе при отсутствии внешнего источника напряжения (рис.1.1). Так как носители заряда совершают беспорядочное тепловое движение, то происходит их диффузия из одного полупроводника в другой. Концентрация электронов в n-слое больше, чем в p-слое, и часть электронов перейдет из n-слоя в p-слой. Одновременно наблюдается диффузионный переход дырок из p-слоя в n-слой. В результате в n-слое остается нескомпенсированный объемный заряд положительных ионов (в основном донорной примеси), а в p-слое - нескомпенсированный объемный заряд отрицательных ионов акцепторной примеси. Между образовавшимися объемными зарядами возникает контактная разность потенциалов Uк=jn-jp и электрическое поле напряженностью Ек На потенциальной диаграмме n-p-перехода (рис.1.1б) за нулевой потенциал принят потенциал граничного слоя. В n-p-переходе возникает потенциальный барьер, препятствующий диффузионному перемещению носителей заряда. Высота барьера равна контактной разности потенциалов и обычно составляет десятые доли вольта. На рис.1.1б изображен барьер для электронов, стремящихся за счет диффузии перемещаться из области n в область p.

Таким образом, в n-p-переходе вследствие ухода электронов и дырок вглубь p- и n-областей образуется обедненный зарядами слой, называемый запирающим и обладающий большим сопротивлением в сравнении с сопротивлением остальных объемов n- и p-областей.

Если источник внешнего напряжения положительным полюсом подключить к полупроводнику p-типа и отрицательным к n-типа (прямое включение), то электрическое поле, создаваемое в n-p-переходе прямым напряжением Uпр, действует навстречу контактной разности потенциалов Uк. Потенциальный барьер понижается до величины Uк-Uпр, уменьшаются толщина запирающего слоя и его сопротивление Rпр.

Если полярность внешнего источника изменить на обратную, то потенциальный барьер возрастает до величины Uк+Uобр. В этом случае через переход могут пройти только неосновные носители: электроны из p-области в n-область и дырки во встречном направлении. Так как концентрация основных носителей заряда на насколько порядков выше концентрации неосновных, то прямые токи на несколько порядков больше обратных. Электронно-дырочный переход обладает выпрямляющими свойствами, которые используются для создания диодов.

Диодом называют полупроводниковый прибор с одним n-p-переходом и двумя внешними выводами. По назначению диоды делят на выпрямительные, высокочастотные, импульсные, стабилитроны и т.д. Их изготавливают на основе германия или кремния. Выпрямительные диоды предназначены для преобразования переменного тока низкой частоты в постоянный ток. Вольтамперная характеристика (ВАХ) выпрямительного диода, его условное графическое изображение и буквенное обозначение даны на рис.1.2. Основные параметры выпрямительного диода: предельно допустимый постоянный ток диода Iпр.max и максимально допустимое обратное напряжение Uобр.max.

Стабилитрон представляет собой кремниевый полупроводниковый диод, который нормально работает при электрическом пробое n-p-перехода. При этом напряжение на диоде незначительно зависит от протекающего тока. Электрический пробой не вызывает разрушения перехода, если ограничить ток до допустимой величины. Стабилитроны применяют для стабилизации постоянного напряжения. ВАХ стабилитрона и его условное графическое обозначение приведены на рис.1.3. Основные параметры стабилитрона: напряжение стабилизации Uст.ном, минимальный Icт.min и максимальный Iст.max токи стабилизации, максимальная мощность Pст.max.

Тиристором называют полупроводниковый прибор с тремя или более n-p-переходами и двумя (динистор) или тремя (тринистор) выводами. Он может находиться в одном из двух устойчивых состояний: низкой проводимости (закрыт) или высокой проводимости (открыт). Структура, условное графическое и буквенное обозначения тиристора, его вольтамперная характеристика даны на рис.1.4а, б, в.

Основу прибора составляет кристалл кремния, в котором созданы четыре слоя с разными типами электропроводности. Внешний p-слой называют анодом (А), внешний n-слой - катодом (К), а два внутренних слоя - базами. Одна из баз имеет вывод - управляющий электрод (У).

При прямом включении (анод положителен по отношению к катоду) переходы П1 и П3 смещены в прямом направлении, а переход П2 - в обратном направлении. До тех пор, пока П2 закрыт, прямой ток практически равен нулю (участок оа характеристики рис. 1.4в). При некотором значении прямого напряжения, равном Uвкл.max, за счет перераспределения зарядов в области баз переход П2 открывается (точка а). Сопротивление его быстро уменьшается (участок аб), и тиристор работает на участке бв характеристики, которая подобна ВАХ диода.

 
 

Напряжение включения Uвкл.max можно уменьшить введением добавочных носителей заряда в любой из слоев, прилегающих к переходу П2. Добавочные носители заряда на рис.1.4а вводятся в слой p от вспомогательной управляющей цепи с независимым источником Еy. При увеличении тока управления Iy характеристика (рис.1.4в) смещается влево (к естественной прямой ветви ВАХ диода). Тиристор остается во включенном состоянии, пока протекающий через него ток больше критического, называемого током удержания Iуд. Как только Iпр станет меньше Iуд, тиристор закрывается.

Следует отметить, что после включения тиристора объемные заряды в области перехода П2 будут компенсированы основным током, если он больше тока Iуд, и тогда ток управления Iу не нужен. Поэтому для снижения потерь в тиристоре он управляется короткими импульсами Iу.

При обратном включении тиристора (анод отрицателен по отношению к катоду) закрыты два перехода П1 и П3, и тиристор тока не проводит. Во избежание пробоя необходимо, чтобы обратное напряжение было меньше Uобр.max.

Основные параметры, используемые при выборе тиристоров: предельно допустимый анодный ток в открытом состоянии тиристора Iпр.max, предельно допустимое обратное напряжение Uобр.max, предельно допустимое прямое напряжение в закрытом состоянии тиристора Uпр.max, ток удержания Iуд.

Маломощные тиристоры применяют в релейных схемах и маломощных коммутирующих устройствах. Мощные тиристоры используют в управляемых выпрямителях, инверторах и различных преобразователях.


 

Предварительное задание к эксперименту

 

Изучить устройство и принцип работы выпрямительного диода, стабилитрона, тиристора. Письменно дать обоснованный ответ на вопрос соответствующего варианта.

Таблица 1.1

Вариант Вопрос
Можно ли с помощью тока управления закрыть тиристор?
Рассчитайте прямое сопротивление выпрямительного диода, если Iпр=0,05А, Uпр=0,67В. Как изменится Rпр при увеличении тока диода?
Можно ли с помощью тока управления включить тиристор при анодном напряжении, практически равном нулю?
Рассчитайте статическое сопротивление стабилитрона, если Uст=4В, I=0,05А. Как изменится Rст при увеличении тока стабилитрона?
Нужно ли поддерживать ток управления после включения тиристора для дальнейшей его работы в открытом состоянии?
Рассчитайте сопротивление открытого тиристора при Uпр=1В, Iпр=0,19А. Как изменится Rпр при увеличении тока тиристора?
Как следует изменить ток управления тиристора для уменьшения напряжения его включения?
Что такое ток удержания тиристора? Закроется ли тиристор при уменьшении прямого тока, если Iпр>Iуд?

 


 

Порядок выполнения эксперимента

 
 

1. Изучить лабораторный стенд по схеме рис.1.5. Установить регулятор потенциометра R2 в крайнее левое положение, переключателем П2.1 подключить выпрямительный диод.

2. Включить цепь под напряжение с помощью шнура питания стенда и, регулируя напряжение потенциометром R2, снять ВАХ диода в прямом направлении Iпр(Uпр). Результаты измерений записать в табл.1.2.

 

Таблица 1.2

Iпр, мА            
Uпр, В            

 

3. Проверить экспериментом ответ на вопрос предварительного задания (вариант 2).

4. Установить потенциометр R2 в исходное положение (п.1), затем подключить стабилитрон и снять обратную ветвь ВАХ стабилитрона Iобр(Uобр). Измерения записать в табл.1.3.

5. Проверить экспериментом ответ на вопрос предварительного задания (вариант 4).

Таблица 1.3

Iобр, мА            
Uобр, В            

 

6. Снять характеристику включения тиристора Uвкл(Iу). Для этого переключателем подключить тиристор, регуляторы R1, R2 установить в крайние левые положения. Регулируя анодное напряжение от 0 до 12 В ступенями через 2 В и медленно увеличивая ток управления Iу до момента включения тиристора, зафиксировать и записать в табл.1.4 значения тока управления. Построить характеристику включения тиристора Uвкл(Iу).

 

Таблица1.4

Uвкл, В
Iу, мА              

 

7. Снять характеристику прямой передачи тока тиристора Iпр(Iу): потенциометром R1 установить ток Iу=0, а потенциометром R2 - напряжение Uпр=8 В, затем увеличивать ток управления до момента включения тиристора, записать значения Iу, Iпр. Увеличивая далее Iу до 10 мА, убедиться в постоянстве анодного тока. Построить график Iпр(Iу).

8. Снять вольтамперную характеристику тиристора Iпр(Uпр) при Iу=5...6 мА. Результаты измерений представить таблицей, подобно табл.1.2. Построить график ВАХ.

9. Проверить экспериментом ответы на вопросы предварительного задания (варианты 1,3,5...8).

 

Содержание отчета

 

Цель работы; ответ на вопрос предварительного задания; схема исследований (рис.1.5); таблицы измерений; ВАХ выпрямительного диода, стабилитрона и тиристора; характеристики включения Uвкл(Iу) и прямой передачи Iпр(Iу) тиристора; сравнение прямых падений напряжений на диоде, стабилитроне и тиристоре; выводы о возможном практическом использовании выпрямительных диодов, стабилитронов и тиристоров.

 

Контрольные вопросы

 

1. Что представляет собой собственная и примесная электропроводности? 2. Что такое n-p-переход и как объяснить его вентильные свойства? 3. Чем обусловлена контактная разность потенциалов n-p-перехода? 4. Охарактеризуйте состояния n-p-перехода при прямом и обратном включении? 5. Поясните графики ВАХ диода и стабилитрона. Как влияет температура на ВАХ? 6. Каковы основные параметры диода, стабилитрона? 7. Поясните устройство и принцип работы тиристора, вид его ВАХ? 8. Каково влияние тока управления на работу тиристора? 9. Что такое динистор, тринистор, однооперационный и двухоперационный (запираемый) тиристоры? 10. Каковы основные параметры и характеристики тиристора? 11. Приведите примеры использования диодов, cтабилитронов, тиристоров.


 

Лабораторная работа №2

 

ИССЛЕДОВАНИЕ БИПОЛЯРНОГО И ПОЛЕВОГО ТРАНЗИСТОРОВ

 

Цель работы: изучение устройства и принципа работы транзисторов; снятие их статических характеристик в схемах с общим эмиттером и общим истоком, определение основных параметров; сравнительный анализ.

 

Общие сведения

 

 
 

Биполярным транзистором называют полупроводниковый прибор с двумя n-p-переходами, образованными слоями полупроводникового материала n-p-n или p-n-p-типа. Он имеет три или более выводов, изготавливается на основе германия или кремния, обеспечивает усиление мощности электрических сигналов. На рис.2.1 приведены структурные схемы, условные графические и буквенные обозначения транзисторов n-p-n-типа (рис.2.1,а) и p-n-p-типа (рис.2.1,б).

Средний слой кристалла называют базой. Ее толщина мала, составляет несколько микрометров и концентрация примесей здесь значительно меньше, чем в соседних слоях. Крайние слои называют эмиттером (Э) и коллектором (К).

Для нормальной работы транзистора между его выводами должны быть включены источники питания. Если источники включены так, что оба перехода П1, П2 находятся под обратным напряжением, то токи транзистора практически равны нулю - этот режим называют отсечкой. Если переходы транзистора имеют прямое смещение, то их сопротивление мало, и транзистор можно рассматривать как узел цепи. Такой режим работы называют насыщением. В усилительном каскаде транзистор работает в активном режиме, при этом эмиттерный переход смещен в прямом направлении, а коллекторный - в обратном (рис.2.1). Прямосмещенный эмиттерный переход имеет небольшое сопротивление - несколько Ом. Коллекторный переход, при отсутствии инжекции из эмиттера, имеет очень большое сопротивление - несколько МОм, поэтому в цепь коллектора можно включать нагрузку с большим сопротивлением, практически не изменяя тока коллектора.

Под действием источника Еэ основные носители заряда из эмиттера преодолевают n-p-переход и попадают в область базы, где частично рекомбинируют с основными носителями заряда базы, образуя ток базы Iб. Так как концентрация дырок (для n-p-n-типа) и электронов (для p-n-p-типа) в базе мала, то не все инжектированные из эмиттера заряды рекомбинируют. Большинство зарядов, вследствие диффузии и поля источника Ек, преодолевает коллекторный переход и образуют ток коллектора.

Коэффициент передачи тока эмиттера

a=DIк /DIэ при Uкб=const.

В современных транзисторах база очень тонкая и a=0,99 и больше.

Когда Iэ=0, то будет небольшой ток через коллекторный переход Iко, обусловленный движением неосновных носителей заряда.

Рассмотренная на рис.2.1 схема включения транзистора называется схемой с общей базой (ОБ), так как база является общим электродом для входной и выходной цепей. Она обеспечивает усиление сигнала по напряжению и мощности, но ток в нагрузке будет меньше, чем входной ток источника сигнала.

 
 

Наиболее часто используется в электронных устройствах схема включения транзистора с общим эмиттером (ОЭ) - рис.2.2,а. Входным здесь является ток базы Iб, а выходным - ток коллектора Iк.

Коэффициент передачи тока базы схемы ОЭ

b=DIк/DIб при Uкэ=const; b=a/(1-a)>>1.

Эта схема обеспечивает усиление тока и напряжения сигнала и максимальное усиление мощности.

Основными характеристиками транзисторов ОЭ являются

1) выходные - Iк(Uкэ) при Iб=const (рис.2.2,б),

2) входные - Iб(Uбэ) при Uкэ=const (рис.2.2,в).

Они определяют связь между постоянными составляющими токов и напряжений, дают возможность выбрать наилучший режим работы, оценить нелинейные искажения усиливаемого сигнала.

Для расчета цепей с биполярными транзисторами в настоящее время используются h-параметры: транзистор представляют четырехполюсником и записывают уравнения четырехполюсника в h-параметрах. Коэффициенты четырехполюсника (h-параметры) выражаются следующим образом:

h11=DUбэ/DIб при Uкэ=const - входное сопротивление Rвх, Ом;

h12=DUбэ/DUкэ при Iб=const - безразмерный коэффициент обратной связи по напряжению;

h21=DIк/DIб при Uкэ=const - безразмерный коэффициент передачи тока (b);

h22=DIк/DUкэ при Iб=const - выходная проводимость (1/Rвых), См.

h-параметры приводятся в справочниках, а также могут быть определены по семейству входных и выходных характеристик транзистора.

Биполярные транзисторы управляются током и потребляют заметную мощность от входной цепи. Указанного недостатка лишены полевые транзисторы (ПТ) - это полупроводниковые приборы с каналом, ток в котором управляется электрическим полем. Принцип действия их основан на использовании носителей заряда только одного знака (электронов или дырок), поэтому их иначе называют униполярными.

Главным достоинством ПТ является высокое входное сопротивление, т.е. они практически не потребляют ток из входной цепи. Кроме того, они более технологичны и дешевле, чем биполярные, обладают хорошей воспроизводимостью требуемых параметров.

По способу создания канала различают ПТ с управляющим n-p-переходом, со встроенным каналом и с индуцированным каналом. Последние два типа относятся к разновидностям МДП-транзисторов с изолированным затвором.

У ПТ с управляющим n-p-переходом (рис.2.3,а) канал - это слой полупроводника n-типа (может быть p-типа), заключенный между двумя n-p-переходами. Канал имеет два вывода во внешнюю цепь: исток (И), из которого заряды выходят в канал, сток (С), в который заряды входят из канала. Слои p-типа соединены между собой и имеют вывод во внешнюю цепь, называемый затвором (З). Затвор служит для регулирования поперечного сечения канала. Особенность ПТ в том, что движение основных носителей заряда только одного знака происходит по каналу от истока к стоку, а не через переход, как в биполярном транзисторе.

 
 

Управляющее напряжение между З и И является обратным для обоих n-p-переходов (Uзи<0). Оно вызывает вдоль канала равномерный слой, обедненный носителями заряда при Uси=0. Изменяя Uзи, изменяют ширину n-p-переходов, тем самым регулируют сечение токопроводящего канала и его проводимость. Напряжение Uси>0 вызывает неравномерность обедненного зарядами слоя, наименьшее сечение канала вблизи стока.

 
 

Управляющее действие затвора иллюстрируют передаточной (стоко-затворной) характеристикой Iс(Uзи) при Uси=const. На практике чаще используют выходные (стоковые) характеристики Iс(Uси) при Uзи=const, по которым строят передаточные (рис.2.3,в).

МДП-транзисторы со встроенным каналом имеют структуру металл - диэлектрик - полупроводник. У поверхности кристалла полупроводника (подложки p-типа) созданы две области n-типа и тонкая перемычка между ними - канал (рис.2.4,а). Области n-типа имеют выводы: И-исток и С-сток. Кристалл покрыт окисной пленкой диэлектрика SiO2, на которой расположен металлический затвор (З), электрически изолированный от цепи исток - сток. Подложка соединяется с истоком внутри прибора, либо имеет вывод во внешнюю цепь (П).

При отрицательном потенциале на затворе Uзи<0 поле затвора выталкивает электроны из канала в p-подложку, исток и сток. Канал обедняется электронами, его сопротивление увеличивается и ток стока уменьшается. Такой режим называют режимом обеднения. Характеристики Iс(Uси) располагаются ниже кривой при Uзи=0 (рис.2.4,в). Если на затвор подано Uзи>0, то под действием поля затвора канал насыщается электронами из p-подложки, истока и стока - это режим обогащения.

Таким образом, МДП-транзистор со встроенным каналом может работать как в режиме обеднения, так и в режиме обогащения , что наглядно показывают его характеристики. Структура, условное графическое изображение, передаточная Iс(Uзи) при Uси=const и стоковые Iс(Uси) при Uзи=const характеристики ПТ со встроенным каналом даны на рис.2.4,а,б,в.

МДП-транзисторы с индуцированным каналом не имеют специально созданного канала между истоком и стоком, и при Uзи=0 выходной ток Iс=0. Канал индуцируется при положительном потенциале на затворе Uзи>0 благодаря притоку электронов из p-подложки, истока и стока. Этот прибор работает только в режиме обогащения.

Основными параметрами полевых транзисторов являются крутизна S=DIс/DUзи при Uси=const и внутреннее (выходное) сопротивление Ri=DU/DIс при Uзи=const. Иногда пользуются третьим параметром - коэффициентом усиления m=DUси/DUзи при Iс=const; m=SRi.

 

Предварительное задание к эксперименту

 

1. По характеристикам биполярного транзистора ОЭ (рис.2.2,б,в) определить заданный вариантом табл.2.1 параметр транзистора, указать размерность, пояснить физический смысл.

 

Таблица 2.1

Вариант
Параметр h11 h12 h21 h22 Rвх b = DIк/DIб Rвых KU=DUкэ/DUбэ
Uси, В 4,5 5,5

 

2. По стоковой характеристике полевого транзистора (рис.2.4,в) построить передаточную характеристику Iс(Uзи) при заданном в табл.2.1 напряжении Uси. Определить крутизну S, внутреннее сопротивление Ri при Uзи=0 и коэффициент усиления m.

3. Сравнить свойства биполярного и полевого транзисторов.

 

Порядок выполнения эксперимента

 

 
 

1. Подготовить схему рис.2.5 для исследования биполярного транзистора VT1: регуляторы R1 и R2 установить в крайние левые положения, переключатель П2 установить в положение 4. После проверки преподавателем включить схему к источнику напряжения.

2. Снять семейство выходных (коллекторных) характеристик транзистора Iк(Uкэ) при Iб=const. Для этого тумблер управляющего напряжения включить в положение «+», регулятором R1 установить значение Iб согласно табл. 2.2 и, изменяя регулятором R2 напряжение Uкэ от 0 до 8...10 В, записать значения тока коллектора Iк в табл.2.2.

Проверить работу транзистора при Iб=0.

 

Таблица 2.2

Uкэ, В 0,2 0,5 1,0 2,0 5,0 8...10
  Iб=0,1мА              
Iк,мА Iб=0,2мА              
при Iб=0,3мА              
  Iб=0,4мА              

 

3. Снять семейство входных характеристик Uбэ(Iб) при Uкэ=0 и при Uкэ=8...10 В. Для этого регулятором R2 установить напряжение Uкэ и, поддерживая его неизменным, изменять регулятором R1 ток базы согласно табл.2.3. Значения напряжения Uбэ записать в табл.2.3.

Таблица 2.3

Iб, мА 0,1 0,2 0,4 0,6
Uбэ, мВ при Uкэ=0          
Uкэ=8...10          

 

4. Регуляторы R1 и R2 установить в крайние левые положения. Переключатель П2.1 установить в положение 5 для исследования полевого транзистора VT2.

5. Снять семейство выходных (стоковых) характеристик МДП-транзистора Iс(Uси) при Uзи =const. С этой целью регулятором R1 поочередно установить заданные табл.2.4 значения напряжения Uзи и, поддерживая Uзи =const, изменять регулятором R2 напряжение Uси от 0 до 8...10В. Значения тока стока записать в табл.2.4 (во избежание повреждения транзистора ток стока не должен превышать 13 мА).

 

Таблица 2.4

Uси, В 0,2 0,5 1,0 8...10
Ic, мА при Uзи=0,8 В                  
Uзи=0,4 В                  
Uзи=0                  
Uзи=-0,4В                  
Uзи=-0,8                  

 

6. Снять передаточные характеристики Iс(Uзи) при Uси =const. Для этого регулятором R2 установить заданные табл. 2.5 значения напряжения Uси и, изменяя Uзи согласно табл.2.5, записать значения тока стока.

 

Таблица 2.5

Uзи, В 0,8 0,4 -0,4 -0,8
Iс, мА При Uси =5 В          
Uси=8...10B          

 

7. По результатам п.п.2,3 и 5,6 построить характеристики. По характеристикам п.п.2,3 определить параметр биполярного транзистора, заданный вариантом предварительного задания. По характеристикам п.п.5,6 определить крутизну S, внутреннее сопротивление Ri и коэффициент усиления m полевого транзистора. Сравнить эти значения с полученными в предварительном задании.

 

Содержание отчета

 

Цель работы; расчет предварительного задания к эксперименту с вычерченными на миллиметровой бумаге графиками характеристик биполярного и полевого транзисторов (рис.2.2,б,в; 2.4,в); сравнительный анализ биполярного и полевого транзисторов; схему экспериментальной установки (рис.2.5); таблицы измерений; на графикахрис.2.2,б,в и 2.4,в нанести экспериментальные точки; зависимость b(Iк) при Uкэ=10 В; расчет максимального значения крутизны передаточной характеристики полевого транзистора при Uси=10 В.

 

Контрольные вопросы

 

1. Как образуется n-p-переход и каковы его свойства? 2. Каково устройство биполярного транзистора и принцип его работы в схеме с общей базой и с общим эмиттером. 3. Как изображают на схемах транзисторы n-p-n и p-n-p-типов? 4. Какова полярность напряжений между электродами транзисторов n-p-n и p-n-p типов? 5. Какие функции выполняет эмиттер и коллектор? 6. Объясните характер входных и выходных характеристик биполярного транзистора. 7. Почему запрещается отключать вывод базы при наличии напряжения на эмиттере и коллекторе? 8. Что представляет собой обратный ток коллекторного перехода? 9. Объясните физический смысл h-параметров транзисторов и как они определяются по входным и выходным характеристикам? 10. Почему коэффициент усиления по току b не остается постоянным при изменении тока эмиттера? 11. Каковы конструкции полевых транзисторов с n-p-переходом и с изолированным затвором? 12. Принцип действия полевых транзисторов, их основные характеристики и параметры. 13. Что такое напряжение отсечки полевого транзистора, как оно определяется? 14. Что такое ток насыщения транзистора и как он определяется? 15. Каковы преимущества полевых транзисторов перед биполярными?


Лабораторная работа №3

 

ФОТО- И ОПТОЭЛЕКТРОННЫЕ ПРИБОРЫ

 

Цель работы: изучение структуры, основных характеристик фотодиода и фоторезистора, принципа функционирования простейших устройств на оптронах.

 

Общие сведения

 

Оптоэлектроникой называют научно-техническое направление, в котором для передачи, обработки и хранения информации используются электрические и оптические средства и методы. В оптоэлектронике световой луч выполняет те же функции управления, преобразования и связи, что и электрический сигнал в электрических цепях.

Устройства оптоэлектроники обладают некоторыми существенными преимуществами по сравнению с чисто электронными устройствами. В них обеспечивается полная гальваническая развязка между входными и выходными цепями. Отсутствует обратное влияние приемника сигнала на его источник. Облегчается согласование между собой электрических цепей с разными входными и выходными сопротивлениями. Оптоэлектронные приборы имеют широкую полосу пропускания и преобразования сигналов, высокое быстродействие и большую информационную емкость оптических каналов связи (1013 - 1015 Гц). На оптические цепи не оказывают влияние различные помехи, вызванные электрическими и магнитными полями.

К недостаткам оптоэлектронных компонентов относятся: низкая температурная и временная стабильность характеристик; сравнительно большая потребляемая мощность; сложность изготовления универсальных устройств для обработки информации; меньшие функциональные возможности по сравнению с ИМС, необходимость жестких требований к технологии изготовления.

Оптоэлектронные приборы излучают и преобразуют излучение в инфракрасной, видимой или ультрафиолетовой областях спектра. Основным компонентом оптоэлектроники является пара с фотонной связью, называемая оптроном. Простейший оптрон можно представить четырехполюсником, состоящим из трех элементов: источник света - 1, световод - 2 и приемник света - 3 (рис.3.1).

Входной сигнал в виде импульса или перепада входного тока возбуждает фотоизлучатель и вызывает световое излучение. Световой сигнал по световоду попадает в фотоприемник, на выходе которого образуется электрический импульс или перепад выходного тока.

В оптронных устройствах в качестве источников света применяются обычно лампы накаливания, электролюминесцентные конденсаторы или светодиоды. В качестве приемников света используют фоторезисторы, фотодиоды, фототиристоры, фототранзисторы и различные комбинации этих приборов. Условные обозначения некоторых типов оптронов показаны на рис.3.2 ( а) - диодный, б) - резисторный, в) - динисторный).

 
 

Работа фоторезисторов основана на явлении изменения сопротивления вещества под воздействием внешнего светового излучения. Конструктивно фоторезистор представляет собой пластину полупроводника, на поверхности которой нанесены электроды. Структура фоторезистора и условное обозначение показаны на рис.3.3, где 1 -диэлектрическая пластина; 2 - полупроводник; 3 - контакты фоторезистора.

Основными характеристиками фоторезистора являются:

1. Вольтамперная характеристика - зависимость тока I через фоторезистор от напряжения U, приложенного к его выводам, при различных значениях светового потока Ф, либо освещенности Е (рис.3.4). Ток при Ф=0 называется темновым током Iт, при Ф>0 общим током Iобщ. Их разность равна фототоку Iф=Iобщ-Iт.

2. Энергетическая характеристика - это зависимость фототока от светового потока, либо освещенности при U=const. В области малых Ф она линейна, а при увеличении светового потока рост фототока замедляется из-за возрастания вероятности рекомбинации носителей заряда (рис.3.5). Энергетическая характеристика иногда называется люксамперной, в том случае, если по оси абсцисс откладывают освещенность Е в люксах.

3. Чувствительность - это отношение выходной величины к входной. В зависимости от того, какой величиной характеризуется излучение, различают токовую чувствительность к потоку

Sф=

и токовую чувствительность к освещенности Е

SЕ=

В качестве одного из основных параметров фоторезистора используют величину удельной интегральной чувствительности, которая характеризует интегральную чувствительность, когда к фоторезистору приложено напряжение 1В.

SФ инт.уд=

У промышленных фоторезисторов удельная интегральная чувствительность имеет пределы десятые, сотые доли при освещенности Е=200 лк.

Важными характеристиками фоторезистора являются также: спектральная характеристика; граничная частота сигнала, модулирующая световой поток; температурный коэффициент фототока и пороговый поток.

Фотодиоды имеют структуру обычного р-n-перехода (рис.3.6), где а) - условное обозначение фотодиода, б) - структура фотодиода. Вследствие оптического возбуждения в р и n областях возникает неравновесная концентрация носителей заряда.

На границе перехода неосновные носители заряда под влиянием электрического поля, перебрасываются через переход в область, где они являются основными носителями. Электрический ток, созданный ими есть полный фототок. Если р-n-переход разомкнут, то перенос носителей заряда, генерируемых светом, приводит к накоплению отрицательного в n-области и положительного в р-области зарядов. Новое равновесное состояние соответствует меньшей высоте потенциального барьера, равной (Uк-Еф). ЭДС Еф, возникающую при этих процессах, на значение которой снижается потенциальный барьер Uк в р-n-переходе, называют фотоэлектродвижущей силой (фото-ЭДС) В данной ситуации фотодиод работает в режиме фотогенератора, преобразуя световую энергию в

 
 

электрическую.

Фотодиод может работать совместно с внешним источником (рис.3.6в). При освещении фотодиода поток неосновных носителей заряда через р-n-переход возрастает. Увеличивается ток во внешней цепи, определяемый напряжением источника и световым потоком. Значение фототока можно найти из выражения Iф=SинтФ, где Sинт - интегральная чувствительность. Вольтамперные характеристики освещенного p-n-перехода показаны на рис.3.9,б. Фототок суммируется с обратным током теплового происхождения.

К основным характеристикам фотодиода относят:

1.

 
 

Энергетические характеристики, которые связывают фототок со световым потоком. Причем фотодиод может быть включен без внешнего источника ЭДС (генераторный режим), так и с внешним источником (рис.3.7: а) - генераторный режим; б) - при работе с внешним источником).

2. Абсолютные и относительные спектральные характеристики – это зависимости абсолютной либо относительной чувствительности от длины волны регистрируемого потока излучения. Они аналогичны соответствующим характеристикам фоторезистора и зависят от материала полупроводника и введенных примесей.

В качестве фотоприемников в оптронных устройствах также используются фототиристоры и фототранзисторы.

У фототранзисторов интегральная чувствительность значительно выше, чем у диода и составляет сотни миллиампер на люмен.

Биполярный фототранзистор представляет собой обычный транзистор, но в корпусе его сделано прозрачное окно, через которое световой поток воздействует на область базы, вызывая в ней генерацию носителей зарядов. Они диффундируют к коллекторному переходу, где происходит их разделение. Дырки под воздействием поля коллектора идут из базы в коллектор и увеличивают ток коллектора, а электроны, оставаясь в базе, повышают прямое напряжение эмиттерного перехода, что усиливает инжекцию дырок в этом переходе. Если базовый вывод транзистора не подключается к схеме, то такое включение называют с “плавающей” базой. В этом случае режим работы транзистора будет сильно зависеть от температуры. Вывод базы используют для задания оптимального режима работы фототранзистора, при котором достигается максимальная чувствительность к световому потоку.

Фототиристоры имеют четырехслойную структуру (рис.3.8,а) и управляются световым потоком, подобно тому, как триодные тиристоры управляются током, подаваемым в цепь управляющего электрода. При действии света на область базы р1 в этой области генерируются электроны и дырки.

Электроны, попадая в область перехода П2, находящегося под обратным напряжением, уменьшают его сопротивление. В результате происходит увеличение инжекции носителей из переходов П1 и П3. Ток через структуру прибора лавинообразно нарастает, т.е. тиристор отпирается. Чем больше световой поток, действующий на тиристор, тем при меньшем напряжении включается тиристор (рис.3.8,б).

Фототиристоры могут успешно применяться в различных автоматических устройствах в качестве бесконтактных ключей для включения значительных напряжений и мощностей. Важные достоинства тиристоров: малое потребление мощности во включенном состоянии, малые габариты, отсутствие искрения, малое время включения.

 

Предварительное задание к эксперименту

 

Используя вольтамперные характеристики (рис.3.9: а) – фоторезистора, б) - фотодиода), а также данные таблицы 3.1, для заданного вариантом U найти значения фототока Iф, и по полученным значениям построить энергетическую характеристику фотоэлектронного прибора. Определить величину токовой чувствительности к освещенности SЕ при Е=200лк.

 

Таблица 3.1

Тип прибора Фоторезистор Фотодиод
Вариант
Напряжение на приборе

 


Порядок выполнения эксперимента

Перед началом выполнения работы привести стенд в исходное состояние. Для этого ручки регуляторов Р1 и Р2 повернуть влево до упора. выключатели В1, В2, В3, В5 установить в нижнее положение. Ручку управления Р3 установить в положение А. Соединить с помощью перемычки гнезда Г1 и Г2. Подключить к гнездам Г1 и Г6 цифровой вольтметр. Переключатель пределов измерения микроамперметра В4 установить в положение наименьшей чувствительности х100 и в дальнейшем, перед проведением очередного эксперимента, возвращать его в это положение. Подключить стенд к сети. Тумблер В5 установить в верхнее положение.

Примечание: в процессе измерений не допускать «зашкаливания» прибора!

1. Снять вольтамперную характеристику Iф(U) фоторезистора. Для этого ручку переключателя Р3 установить в положение А, а тумблер В1 перевести в верхнее положение. Данные эксперимента занести в таблицу 3.2.

 

Таблица 3.2

U, В
IФ, мкА Е=0 лк            
Е=200 лк            
Е=400 лк            
Е=1000 лк            

2. Вернуть в левое положение ручки регуляторов Р1 и Р2. Установить ручкой регулятора Р1 напряжение на фоторезисторе U=3 В и снять зависимость фототока от освещенности IФ(Е), задавая значение Е регулятором Р2, поддерживая постоянным напряжение на фоторезисторе ручкой Р1. Полученные значения занести в таблицу 3.3.

Таблица 3.3

Е, лк
IФ, мкА                

3. Соединить перемычкой гнезда Г1 и Г3, тумблер В1 должен находиться в верхнем положении. Снять вольтамперные характеристики фотодиода для различных значений освещенности Е. Напряжение на фотодиоде устанавливать регулятором Р1. Полученные данные занести в таблицу 3.4.

Таблица 3.4

U, В
IФ, мкА Е=200 лк            
Е=400 лк            
Е=1000 лк            

4. Для снятия энергетических характеристик фотодиода в генераторном режиме установить тумблер В1 в нижнее положение, ручки регуляторов Р1 и Р2 в крайнее левое положение. Соединить перемычкой гнезда Г1 с Г3 (в режиме Rн=0), с Г4 (Rн=200 Ом), с Г5 (Rн=500 Ом). Снять зависимость фототока Iф от освещенности Е. Данные занести в таблицу 3.5.

Таблица 3.5

Е, лк
Iф, мкА Rн=0            
Rн=200 Ом            
Rн=500 Ом            

5. Перевести тумблер В1 в верхнее положение и снять энергетические характеристики фотодиода для случая, когда напряжение внешнего источника Uвш отлично от нуля. Полученные значения занести в таблицу 3.6.

Таблица 3.6

Е, лк
Iф, мкА Uвш=2 В            
Uвш=4 В            

7. Исследовать работу порогового устройства, состоящего из динисторного оптрона и элемента, выполняющего функцию логического И. При подаче на вход элемента И двух логических единиц (тумблеры В1 и В2 в верхнем положении), на выходе формируется сигнал высокого уровня, о чем сигнализирует зажигающийся светодиод VD1. В результате этого загорается и светодиод оптрона VD2, освещающий динистор оптрона и вызывающий его включение, о чем сигнализирует лампочка Л1.

По окончании работы тумблер В5 перевести в нижнее положение, отключить стенд от сети.

Содержание отчета

 

1. Расчет предварительного задания к эксперименту. 2. Таблицы экспериментальных значений. 3. Энергетическая характеристика, построенная по данным предварительного задания и сравнительный анализ ее вида с аналогичной характеристикой, построенной по экспериментальным данным. 4. Вольтамперные и энергетические характеристики фоторезистора, построенные по снятым значениям. 5. Вольтамперные и энергетические характеристики фотодиода в генераторном режиме и режиме с внешним источником напряжения.

Контрольные вопросы

 

1. Перечислите достоинства и недостатки оптоэлектронных приборов. 2.Назовите основные характеристики фоторезисторов. 3. Почему световые характеристики фоторезисторов нелинейны? 4. Что такое удельная чувствительность фоторезистора? 5. Назовите возможные режимы работы фотодиодов. 6. Опишите механизм образования фото-ЭДС при освещении светом р-n-перехода. 7. Перечислите основные параметры фотодиода.


 

Лабораторная работа № 4

 

ИССЛЕДОВАНИЕ ОДНОФАЗНЫХ ВЫПРЯМИТЕЛЕЙ С ФИЛЬТРАМИ

 

Цель работы: изучение устройства, принципа действия и режимов работы однофазных выпрямителей и сглаживающих фильтров.

Общие сведения

 

Выпрямителем называют устройство, предназначенное для преобразования электрической энергии источника переменного тока в электрическую энергию, потребляемую приемником постоянного тока. Такое преобразование необходимо в том случае, когда первичным источником электроэнергии является однофазная (трехфазная) сеть или автономный генератор переменного тока, а потребитель электроэнергии работает на постоянном токе.

Для потребителей постоянного тока мощностью до нескольких сотен ватт используют однофазные выпрямители, подключаемые к однофазной сети переменного тока. Однофазные выпрямители, как правило, входят в состав источников вторичного электропитания (ИВЭ) радио- и телевизионных, измерительных, вычислительных электронных устройств, применяют для питания электродвигателей постоянного тока, зарядки аккумуляторных батарей и др.

Для потребителей постоянного тока мощностью более 1 кВт используют трехфазные выпрямители, подключаемые к промышленной трехфазной сети.

Структурная схема традиционного однофазного источника питания постоянного тока представлена на рис.4.1.

 
 

Основным и обязательным элементом схемы является выпрямитель (В) на полупроводниковых вентилях. Принцип действия любого выпрямителя основан на односторонней проводимости вентилей, преобразующих переменный ток в пульсирующий ток постоянного направления. Для уменьшения пульсаций выпрямленного напряжения после выпрямителя может быть включен сглаживающий фильтр (Ф), а при необходимости постоянства величины напряжения Uн на нагрузке - стабилизатор напряжения (Ст). Выпрямитель подключается к питающей сети переменного тока через трансформатор (Т) в случае, если требуется преобразование уровня напряжения питающей сети Uс к необходимому уровню напряжения нагрузки Uн, а также для электрического разделения цепей.

Основными недостатками выпрямителей с трансформаторным входом являются большие габариты, масса трансформатора и сглаживающего фильтра. В малогабаритных ИВЭ электронной аппаратуры применяют схемы с бестрансформаторным входом, работа которых основана на многократном преобразовании электрической энергии. В таких схемах выпрямитель подключен непосредственно к питающей сети, а согласование уровней напряжений сети и нагрузки производится трансформатором на повышенной промежуточной частоте переменного тока, что позволяет значительно уменьшить габариты и массу трансформатора и фильтра.

В данной работе рассматриваются два вида неуправляемых однофазных выпрямителей: однополупериодный и двухполупериодный мостовой. В неуправляемых выпрямителях нет возможности регулировать величину выпрямленного напряжения, потому что они выполняются на неуправляемых вентилях - полупроводниковых диодах. При анализе работы выпрямителей будем считать вентили и трансформатор идеальными, т.е. сопротивление диодов при прямом включении равно нулю, при обратном включении - бесконечности; для трансформатора пренебрегаем сопротивлением рассеяния и активным сопротивлением обмоток.

Однофазный однополупериодныйвыпрямитель содержит один вентиль VD, включенный в цепь вторичной обмотки трансформатора Т последовательно с нагрузкой Rн (рис.4.2,а). Временные диаграммы напряжений и токов, поясняющие работу выпрямителя на активную нагрузку без фильтра, представлены на рис.4.2,б. В первый полупериод напряжения вторичной обмотки трансформатора u2= , когда оно положительно, диод VD открыт, т.к. на его аноде действует положительный потенциал. На этом интервале времени (0 - T/2) через нагрузку будет протекать ток , являющийся для диода прямым током. При этом uв=0, uн=u2= . На втором полупериоде напряжение u2 становится отрицательным, и диод закрывается под действием отрицательного потенциала на аноде диода. На этом интервале времени (T/2 - T) iн=0, uн=0, напряжение на вентиле uв=u2= будет являться обратным напряжением диода.

В результате такой работы вентиля ток через нагрузку будет протекать в течение только одного полупериода переменного напряжения u2 и вызывать на нагрузке периодическое несинусоидальное напряжение uн, среднее значение которого может быть определено

.

Средний ток через вентиль Iпр равен среднему току нагрузки Iпр=Iн.

Максимальное напряжение на закрытом вентиле

Действующее значение напряжения вторичной обмотки трансформатора

Действующее значение тока вторичной обмотки трансформатора

Расчетная мощность трансформатора

Недостатками однополупериодного выпрямителя являются большой уровень пульсаций выпрямленного напряжения, вынужденное намагничивание сердечника трансформатора за счет постоянной составляющей тока вторичной обмотки, плохое использование трансформатора (SТ=3,5Pн), низкие коэффициенты использования вентилей (KI=Iв.max/Iн=p, KU=Uобр.max/Uн=p), малый КПД выпрямителя h=0,481.

Однополупериодные выпрямители применяются для питания маломощных усилителей, электронно-лучевых трубок и в высоковольтных установках для испытания изоляции.