ТЕМА 6. ЭЛЕКТРОННЫЕ УСТРОЙСТВА

 

 

ЛЕКЦИЯ 21. РЕЗИСТИВНЫЕ УСИЛИТЕЛИ

СИГНАЛОВ НИЗКОЙ ЧАСТОТЫ

1. КЛАССИФИКАЦИЯ УСИЛИТЕЛЕЙ

 

Усилителями называются устройства, в которых сравнительно маломощный входной сигнал управляет передачей значительно большей мощности из источника питания в нагрузку. Все многообразие усилителей разделяют по ряду признаков.

1.По типу применяемого активного элемента выделяют

– усилители на электронных лампах;

– усилители на транзисторах;

– магнитные усилители;

– параметрические усилители;

– молекулярные усилители.

Усилители на электронных лампах в последние годы применяются ограниченно из – за больших габаритов, большой потребляемой мощности, малого срока службы. Магнитные усилители чаще используются в устройствах автоматики, параметрические и молекулярные – в технике СВЧ. Наиболее широкое применение в промышленной электронике нашли транзисторные усилители и усилители на ИМС.

2. В зависимости от полосы усиливаемых частот различают

– усилители постоянного тока (УПТ);

– усилители низкой частоты (УНЧ);

– избирательные усилители.

УПТ усиливают постоянную составляющую сигналов и колебания до некоторой, обычно не очень высокой, верхней частоты (рис. 21.1, а).

УНЧ предназначены для усиления сигналов в диапазоне от fн до fв (рис 21.1, б)

Избирательные усилители обеспечивают усиление сигналов со спектром, достаточно узким относительно средней частоты f0. Для них справедливо условие (рис 21.1, в).

3. По назначению усилители делятся на

– усилители тока;

– усилители напряжения;

– усилители мощности.

Усилители тока предназначены для усиления до заданного значения протекающего через нагрузку тока.

В усилителе напряжения режим работы выбирается так, чтобы напряжение сигнала на его выходе было больше входного. При этом величина мощности сигнала на выходе усилителя не имеет существенного значения.

В усилителе мощности основной задачей является выделение заданной мощности сигнала на полезной нагрузке. При этом выходное напряжение может быть меньше, чем на входе.

4. По виду нагрузки активного усилительного элемента различают

– резистивные усилители;

– трансформаторные;

– резонансные.

5. В зависимости от способа включения усилительного элемента различают схемы:

– с общим эмиттером (истоком);

– с общей базой (затвором);

– с общим коллектором (стоком).

Для полной характеристики усилителя необходимо использование всех признаков. Например, резистивный усилитель низкой частоты на полевом транзисторе по схеме с общим истоком.

 

2. ПРИНЦИП РАБОТЫ РЕЗИСТИВНОГО УСИЛИТЕЛЯ

ПО СХЕМЕ С ОБЩИМ ЭМИТТЕРОМ

 

Простейший усилительный каскад по схеме с общим эмиттером приведен на рис. 21.2, а. В качестве усилительного элемента в схеме используется биполярный транзистор n – p – n типа. Источник питания Ек связан с коллектором транзистора через сопротивление нагрузки Rк. Входной сигнал подается на базу транзистора. Его параметры определяют напряжение Uбэ и ток iб. Выходной сигнал снимается с участка коллектор – эмиттер транзистора и определяется напряжением Uкэ. Для анализа принципа работы каскада построим его передаточную характеристику (рис. 21.2, б).

С увеличением входного сигнала (Uбэ) растет ток базы Iб, а значит, и ток коллектора, причем,

.

Ток коллектора создает падение напряжения на резисторе :

,

а также на дифференциальном сопротивлении участка коллектор-эмиттер транзистора - , причем, всегда

.

Рост тока коллектора означает уменьшение Rкэ, а значит, и Uкэ. При этом на постоянном сопротивлении резистора падение напряжения увеличивается. Так как дифференциальное сопротивление Rкэ вычислять сложно, падение напряжения на участке коллектор-эмиттер транзистора находят как разность

.

Итак, с увеличением тока коллектора Iк увеличивается падение напряжения на резисторе Rк и уменьшается напряжение Uкэ, т.е. выходное напряжение каскада (рис. 21.2, б).

Когда ток коллектора достигает насыщения (т.е. максимального значения), напряжение на участке коллектор-эмиттер транзистора достигает наименьшего значения. Это значение называют напряжением насыщения - Uкэн, причем,

.

Как правило, напряжение Uкэн пренебрежимо мало в сравнении с Ек, поэтому иногда им пренебрегают, полагая . Дальнейшее увеличение

Uбэ не может вызвать изменений тока транзистора Iк и напряжения Uкэ.

Анализ передаточной характеристики позволяет выделить три характерных участка (они обозначены римскими цифрами). На участке I через транзистор протекает только неуправляемый обратный ток коллекторного перехода. Сопротивление . Практически все напряжение источника Ек падает на сопротивление Rкэ, т.е. .

На участке II напряжение на коллекторе транзистора можно изменять в пределах , а ток – в пределах . Эти изменения являются результатом регулировки параметров Uбэ, и Iб маломощного источника сигнала. Например, , а . Отношение обозначают КU и называют коэффициентом усиления по напряжению. В нашем примере КU=50. Кроме того, увеличение напряжения Uбэ приводит к пропорциональному уменьшению напряжения Uкэ, т.е. знаки приращений входного и выходного сигналов противоположны. Такие усилители называют инвертирующими.

На участке III . Транзистор теряет свойства усилительного элемента.

Передаточная характеристика позволяет рассмотреть различные режимы работы усилительного каскада (классы усиления). При работе в классе «В» напряжение (см. график пунктирной линией на рис. 21.2, б). На выход передается сигнал только одной полярности. При подаче на вход двухполярного сигнала часть информации будет потеряна.

При работе в классе «А» напряжение (см. график сплошной линией на рис. 21.2, б). Здесь Uсмнапряжение смещения, постоянная величина, не зависящая от Uвх. Когда Uвх = 0, Uбэ = Uсм. Такой режим называют режимом покоя, а токи Iб, Iк и напряжения Uбэ и Uкэ называют токами и напряжениями покоя и обозначают Iбп; Iкп; Uбэп; Uкэп. Напряжение смещения Uсм выбирают так, чтобы рабочая точка транзистора Т находилась в середине линейного участка II. В этом случае любое приращение входного напряжения вызовет пропорциональное инверсное приращение выходного напряжения , где КU – коэффициент усиления каскада по напряжению.

При работе в классе D на вход каскада подается большой сигнал (см. график штрих пунктирной линией на рис. 21.2, б). Передаваемый сигнал ограничивается сверху и снизу. Такой режим широко применяется в импульсной технике.

2.1 Схемы смещения и температурной стабилизации

Чтобы обеспечить усиление каскада в классе А, на базу транзистора необходимо подать напряжение смещения Uсм. Это обеспечивают специальные схемы, которые называют схемами смещения. Рассмотрим наиболее часто применяемые схемы.

Схема смещения с фиксацией тока базы (рис. 21.3, а). Фиксация тока базы Iб достигается, когда в цепь базы включается резистор Rб с большим сопротивлением.

Для цепи базы справедливо равенство . Следовательно,

. (21.1)

В (21.1) , и им можно пренебречь. Следовательно, ток покоя базы определяется величиной внешнего сопротивления Rб , не зависит от параметров транзистора и является фиксированной величиной.

Схема смещения с фиксацией напряжения базы приведена на (рис. 21.3, б). Для цепи базы в этой схеме справедливо равенство:

.

Из равенства очевидно, что

, (21.2)

где - ток делителя.

Чтобы напряжение смещения Uбэ не зависело от параметров входной цепи транзистора, ток делителя Iд необходимо выбирать значительно больше тока базы Iб. Обычно . Тогда

(21.3)

и не зависит от тока базы. Большое значение тока делителя приводит к необходимости дополнительных затрат энергии источника питания. Это недостаток схемы. Общим недостатком рассмотренных схем является зависимость режима работы транзистора от температуры окружающей среды (температурные изменения токов базы и коллектора, коэффициента передачи тока базы β).

Для устранения температурной зависимости в цепь смещения можно включить элементы коррекции, сопротивление которых зависит от температуры, например, терморезистор или диод. Значительно чаще применяют схемы стабилизации с отрицательной обратной связью (ООС). Рассмотрим наиболее широко применяемую схему температурной стабилизации с ООС по току в цепи эмиттера (рис. 21.3, в).

В качестве элемента ООС в схеме используется резистор . Сопротивление участка база - эмиттер транзистора Rбэ, резисторы и образуют замкнутый контур. Для этого контура справедлив второй закон Кирхгофа, согласно которому . Отсюда

. (21.4)

Выражение (21.4) раскрывает физику стабилизирующего действия ООС. Так, если под воздействием дестабилизирующего фактора ток базы Iб начнет возрастать, то увеличится и ток эмиттера , а значит, и . Но это приведет к уменьшению напряжения Uбэ настолько, чтобы ток базы принял прежнее значение. Таким образом, ООС всегда препятствует любому изменению тока эмиттера, а значит, и тока базы тем эффективнее, чем больше значение Rэ. Но это значит, что ООС будет препятствовать и приращению тока коллектора под воздействием входного сигнала, резко уменьшая коэффициент усиления каскада.

Чтобы не допустить возможного уменьшения коэффициента усиления каскада с ООС, параллельно Rэ включают емкость Сэ. Значение емкости выбирают из условия на минимальной частоте сигнала. В этом случае переменная составляющая (сигнал) будет замыкаться по Сэ, а медленно изменяющиеся составляющие температурной нестабильности - по Rэ. Каскад сохраняет высокий коэффициент усиления и стабильность свойств в широком диапазоне температуры окружающей среды.

2.2. Схема замещения и основные показатели каскада с ОЭ.

Усилительные каскады оцениваются по ряду параметров и характеристик. К ним относятся коэффициенты усиления КU, КI, КP; входные и выходные сопротивления; полоса пропускания; АЧХ и ФЧХ; амплитудная характеристика и т.п. Определяются эти параметры и характеристики в процессе анализа схем усилителей. Основными методами анализа являются графоаналитический метод или метод линеаризации схем замещения. Первый из названных методов полезен, когда амплитуда приращений соизмерима с напряжением смещения, второй – когда ∆U<<U0. Графоаналитический метод анализа основан на использовании ВАХ транзисторов и позволяет получить более точные результаты. Этот метод будет рассмотрен на практических занятиях.

Когда входной сигнал мал (∆U<<U0), полезен метод линеаризации схем замещения. Оценка параметров выполняется по переменной составляющей. При этом напряжение источника питания, напряжение смещения не учитываются, так как для переменной составляющей внутреннее сопротивление названных источников равно нулю. Их зажимы можно считать замкнутыми накоротко. Для схемы рис. 21.3, в RЭ по переменной составляющей также равно нулю, так как оно зашунтировано емкостью СЭ. Обычно R1>>R2, и его влияние можно не учитывать. С учетом оговоренных условий схема замещения усилительного каскада с ОЭ (рис. 21.3, в) приведена на рис. 21.4.

В этой схеме h11=Rбэ; . Значение Сэкв определяется емкостью монтажа, емкостью p-n перехода коллектор-база транзистора и емкостью нагрузки. Наличие в схеме реактивных элементов обуславливает зависимость её параметров от частоты. Для количественной оценки такой зависимости введены понятия частотная характеристика и полоса пропускания усилительного каскада.

Частотная характеристика определяет зависимость модуля коэффициента усиления каскада от частоты – АЧХ (рис. 21.5, а) и зависимость от частоты разности фаз реакции и воздействия – ФЧХ (рис. 21.5, б).

Полоса пропускания усилителя - это полоса частот от ωн до ωв, в пределах которой модуль коэффициента усиления изменяется в допустимых пределах.

Основные показатели усилительного каскада оцениваются в области средних частот. Для средних частот сопротивлением СР и проводимостью Сэкв можно пренебречь, т.к. . С учетом этого схема замещения усилителя в области средних частот приходит к виду рис. 21.6.

 

 
 

Для схемы рис. 21.6

.

Обычно Rкэ ≈ 104 Ом >> Rк, и его влиянием на значение выходного сопротивления пренебрегаем. Тогда можно записать, что

.

Подставляя вместо , а вместо Rвых – его значение, легко получить выражение для оценки коэффициента усиления каскада по напряжению в области средних частот

, (21.5)

где – коэффициент усиления каскада в режиме холостого хода, – коэффициент потерь сигнала в выходной цепи.

Последнее выражение показывает, что в области средних частот коэффициент усиления каскада по схеме с ОЭ зависит от параметров нагрузки, но не зависит от частоты.

В области верхних частот пренебрегаем сопротивлением СР , но сопротивление емкости Сэкв необходимо учитывать. Тогда

.

Обозначим произведение Rвых·СэквВ, причем, . Тогда

(21.6)

Модуль коэффициента усиления определяется выражением:

(21.7)

Очевидно, что с ростом частоты ω модуль коэффициента усиления |КВ(jω)| уменьшается.

В области нижних частот существенное влияние оказывает сопротивление емкости конденсатора CP. Влиянием Сэкв пренебрегают. Выражение для коэффициента усиления принимает вид:

, (21.8)

где

Таким образом, в области нижних частот, с уменьшением частоты коэффициент усиления падает. Сопротивление емкости конденсатора СР вместе с Rвых образует делитель напряжения. С уменьшением частоты сопротивление XCp увеличивается. Увеличивается и падение напряжения на нем. Напряжение на RВЫХ падает.

 

3. УСИЛИТЕЛЬ ПО СХЕМЕ С ОБЩИМ КОЛЛЕКТОРОМ

Усилитель по схеме с общим коллектором (ОК) (рис. 21.7, а) обладает большим значением Rвх и малым Rвых. Этим он выгодно отличается от каскада с общим эмиттером. Однако коэффициент усиления по напряжению КU <1, поэтому каскад с ОК нашел применение как буферный. Он включается между маломощным источником сигнала и каскадом с ОЭ либо между каскадом с ОЭ и низкоомной нагрузкой.

В схеме каскада с ОК резистор Rб образует цепь смещения с фиксацией тока покоя базы. Коллектор транзистора подключен к источнику питания Ек. В эмиттерную цепь введен резистор Rэ. Он обеспечивает стабилизацию режима работы транзистора за счет ООС по току. Нагрузка RH подключается к эмиттерной цепи через разделительный конденсатор СР. Последний исключает попадание постоянной составляющей тока эмиттера в нагрузку. При таком включении приращение входного и выходного сигналов совпадают по знаку. Значит, усилитель по схеме с общим коллектором неинвертирующий.

Входная цепь по переменной составляющей включает участок база-эмиттер с сопротивлением Rбэ, резистор Rэ и параллельно соединенный с ним резистор RH. Поэтому

.

Обозначим

.

Тогда

.

Теперь легко определить входное сопротивление каскада:

. (21.13)

Например, пусть в схеме рис. 21.7, а известны величины: Rбэ = 103Ом; b = 50; Rэ = RН = 400Ом.

Тогда по (21.13) Rвх = 11200 Ом.

Определим коэффициент усиления по напряжению:

. (21.14)

Для приведенного примера КU = 0,91.

Чтобы обеспечить наилучшие условия передачи мощности сигнала в нагрузку, значение Rэ, как правило, принимают равным RH.

В заключение отметим, что сигнал на выходе каскада с ОК повторяет форму входного сигнала (КU близок к единице, инверсия отсутствует). Именно поэтому за каскадом закрепилось название эмиттерный повторитель.

 

4. ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ

Рассмотренный усилитель по схеме с общим эмиттером широко распространен, но имеет ряд недостатков: малое входное и большое выходное сопротивления, зависимость коэффициента усиления от параметров нагрузки. Эти недостатки частично или полностью исключены в дифференциальном усилителе.

Простейшая схема дифференциального каскада приведена на рис.21.7, б. Транзисторы Т1 и Т2, а также резисторы Rк1 и Rк2 образуют мост. В диагональ 1 - 1' моста включены источники питания + Ек и -Ек, а также Rэ. В диагональ 2 - 2' включена нагрузка - RH. Для нормальной работы каскада мост должен быть строго сбалансирован, т.е. Rк1 = Rк2, а транзисторы должны иметь одинаковые параметры, т.е. должны быть изготовлены по одной технологии, на одном кристалле. Поэтому дифференциальные каскады изготовляют в заводских условиях в виде микросхем.

Пусть . Токи транзисторов Т1 и Т2 создают на сопротивлении Rэ падение напряжения URэ, причем,

. (21.9)

Это напряжение является напряжением смещения для обоих транзисторов. Так как параметры транзисторов одинаковы, то и токи транзисторов одинаковы, т.е. , , . Равные коллекторные токи создают на равных сопротивлениях Rк1 и Rк2 равные падения напряжений Uк1=Uк2. Поэтому

.

Резистор Rэ образует цепь ООС по току, обеспечивает температурную стабилизацию и устраняет дрейф нуля (отклонение Uвых от нуля за счет нестабильности Ек).

Источник сигнала может подключаться к входу одного из транзисторов (при этом вход другого транзистора заземляется) либо между базами двух транзисторов. Рассмотрим первый вариант включения. Пусть источник сигнала е(t) включен к входу транзистора Т1, т.е. Uвх1 = е. Вход транзистора Т2 заземлен. Пусть также е > 0. Под воздействием входного сигнала увеличиваются ток базы ; ток коллектора и ток эмиттера первого транзистора. Приращение тока эмиттера DIэ1 вызывает приращение падения напряжения URэ (см.8.5), т.е. напряжения ООС на участке база-эмиттер транзистора Т2. Это приводит к уменьшению тока Iэ2 так, что

.

Следовательно,

; ; .

Таким образом, благодаря ООС по току воздействие сигнала на вход одного из транзисторов вызывает равные по величине и противоположные по знаку изменения токов и напряжений в обоих транзисторах.

Отметим, что при подаче сигнала на вход транзистора Т2 физические процессы каскада не изменятся. Однако полярность выходного сигнала будет противоположной входному, всвязи с этим, вход транзистора Т1 называют прямым, а вход транзистора Т2 – инверсным. Кроме того, к входам транзисторов можно подключать независимые источники сигналов Uвх1 и Uвх2. В этом случае выходной сигнал (в классе А) может быть найден методом суперпозиции от воздействия каждого из сигналов.

Оценим основные параметры каскада. Для этого учтем, что за счет ООС всегда , а приращения тока базы протекают через входные цепи (участки база - эмиттер) двух транзисторов. Значит

. (21.10)

Тогда

.

Если RH= , то

. (21.11)

Из (21.11) следует, что ООС не влияет на коэффициент усиления каскада. Следовательно, Rэ может быть достаточно большим.

Входное сопротивление каскада определим с учетом (21.10)

. (21.12)

Аналогично найдем, что и .

Таким образом, дифференциальный каскад при его сравнении с усилителем по схеме с общим эмиттером имеет в два раза большие сопротивления Rвх и Rвых, а его коэффициент усиления не зависит от значения Rэ.

 

5. УНЧ НА ИМС

Современные разработчики электронной аппаратуры стремятся использовать готовые функциональные узлы в виде ИМС. Схемные решения ИМС тщательно проработаны и обеспечивают высокое качество аппаратуры. Предприятия, выпускающие микросхемы, заинтересованы в их сбыте. Поэтому они стремятся разработать универсальные микросхемы, которые можно применять в качестве различных функциональных узлов. Это повышает их спрос. Одной из таких ИМС является операционный усилитель (ОУ).

ОУ имеет чрезвычайно высокий коэффициент усиления по напряжению (десятки и даже сотни тысяч), большое входное сопротивление (сотни кОм), малое выходное сопротивление (десятки - сотни Ом). Он усиливает широкий спектр частот, вплоть до постоянной составляющей.

Схемное обозначение ОУ приведено на рис. 21.8, а. В обозначении треугольник символизирует усиление и показывает направление со входа на выход. У ОУ пять основных выводов: два для подключения питания, два для подачи входных сигналов и один для снятия выходного сигнала. Один из входов называют неинвертирующим. При подаче сигнала на этот вход выходной сигнал имеет ту же фазу, что и входной. Второй вход ОУ инвертирующий. Полярность выходного сигнала противоположна полярности сигнала, поданного на этот вход. Инвертирующий вход обозначается кружком или знаком «-». Входная цепь, обеспечивающая независимую подачу двух входных сигналов, называется дифференциальной. Дифференциальным называется и ОУ с двумя независимыми входами.

В последние годы часто применяют схемное обозначение ОУ аналогично символам элементов цифровой техники (см. рис. 21.8, б). Знак обозначает усиление, а – достаточно большое значение коэффициента усиления. Выводы ±Е предназначены для подключения симметричного источника питания, выводы FC – для подсоединения элементов частотной коррекции, а выводы NC – элементов балансировки усилителя.

На рис. 21.8, в приведена упрощенная структурная схема ОУ. Схема включает симметричный дифференциальный каскад (по схеме рис.21.7, а), несимметричный дифференциальный каскад (у него сигнал снимается с коллектора Т2) и эмиттерный повторитель. Первый каскад обеспечивает высокое входное сопротивление ОУ. Для этого он переводится в режим малых токов. Коэффициент усиления этого каскада обычно не превышает десяти единиц. Второй каскад предназначен для перехода к несимметричному выходу и обеспечивает основное усиление (КU ≈ 100). Оконечный каскад представляет собой усилитель мощности. Его коэффициент усиления лежит в пределах нескольких единиц, но этот каскад обеспечивает малое выходное сопротивление ОУ и высокую нагрузочную способность. Общий коэффициент усиления ОУ определяется произведением коэффициентов усиления отдельных каскадов, а потому достигает больших величин.

Схема включения дифференциального ОУ для усиления сигналов приведена на рис. 21.9, а. Для этой схемы выходное напряжение ОУ определяется по формуле

(21.15)

где КU – коэффициент усиления ОУ.

Если один из входов ОУ соединить с общим выводом (заземлить), то можно реализовать два варианта усилителей с одним входом, один из которых будет инвертирующим (рис. 21.9, б), а второй – неинвертирующим (рис. 21.9, в). Для инвертирующего ОУ выходное напряжение равно а для неинвертирующего

Если оба входа ОУ соединить вместе, то получим схему с синфазным входом. Сигнал, поступающий на вход такой схемы, также называют синфазным. Для синфазного сигнала в соответствии с (21.15) выходное напряжение должно быть равно нулю. В реальных ОУ выходное напряжение отлично от нуля, хотя имеет малое значение, поэтому ОУ снабжаются схемами балансировки.

Динамические свойства ОУ определяются двумя параметрами: частотой единичного усиления f1 и максимальной скоростью нарастания выходного напряжения vUвых макс.

В предыдущей лекции было показано, что с ростом частоты модуль коэффициента передачи тока базы транзистора |β| уменьшается и появляется запаздывающий фазовый сдвиг. Это приводит к зависимости КU ОУ от частоты, а именно: с ростом частоты КU также уменьшается. Частота, на которой коэффициент усиления ОУ уменьшается до единицы, называется частотой единичного усиления f1. Значение f1 определяет частотную полосу ОУ. У большинства ОУ f1 лежит в диапазоне от десятых долей мегагерца до нескольких десятков мегагерц.

Максимальная скорость нарастания выходного напряжения vUвых макс – это отношение изменения Uвых от 10 до 90% номинального значения ко времени, за которое произошло это изменение, если на вход подан идеальный скачок напряжения

vUвых макс = dUвых/dt [В/мкС].

Ограниченное значение vUвых макс может приводить к искажению сигнала на выходе ОУ, если его частота больше максимально допустимой fмакс, причем,

, (21.16)

где νн – номинальное значение скорости нарастания выходного напряжения, Um вых – максимальное значение выходного сигнала.

Недостатки операционного усилителя:

1. Коэффициент усиления ОУ КU меняется от экземпляра к экземпляру

в очень широких пределах. Например, для ОУ серии К153УД1 КU = 20000 ÷ 80000.

2. Коэффициент усиления КU сильно зависит от температуры окружающей среды. Это обусловлено зависимостью от температуры коэффициента передачи тока базы транзисторов -b.

3. Большое значение КU ограничивает линейный участок передаточной характеристики ОУ очень малыми напряжениями по входу.

Приведенные недостатки сильно затрудняют применение ОУ непосредственно в качестве усилителя. Рассмотрим влияние третьего пункта

более подробно.

График передаточной характеристики приведен на рис. 21.10, а. За счет симметричного питания передаточная характеристика ОУ симметрична. В области линейного участка напряжение на выходе пропорционально входному и может изменяться от – Uвых макс до + Uвых макс. Коэффициентом пропорциональности является КU. Величина Uвых макс = (0,9 ÷ 0,95)·Еп. Напряжение на входе Uвх = (Uвх1-Uвх2).

Если напряжение питания Еп и КU известны, то легко определить границы линейного участка по входу ± ∆Uгр. Например, если КU =20000, а максимальное напряжение на выходе ОУ - ± 10 В, то ∆Uгр = ± 0,5 мВ. При увеличении входного напряжения за эти границы напряжение на выходе будет оставаться неизменным и равным Uвых макс. Появляются нелинейные искажения сигнала. Таким образом, малый диапазон изменений амплитуды входного сигнала не позволяет применять ОУ для усиления сигналов в большом числе практических случаев.

Значительно уменьшить недостатки ОУ позволяет применение ОС. Схема ОУ с ОС приведена на рис. 21.10, б. Входной сигнал подается на прямой вход ИМС. С выхода ОУ напряжение ОС через делитель R1R2 поступает на инвертирующий вход ОУ

, (21.17)

где

Выходное напряжение ОУ определяется разностью Uвх - UОС. Такая ОС называется отрицательной (ООС). Учитывая это, запишем ряд последовательных преобразований:

Теперь очевидно, что