Структурная организация ферментов

 

В настоящее время получены неопровержимые экспериментальные доказательства белковой природы ферментов. Единственным исключением из этого положения является обнаружение у молекулы ряда предшественников РНК ферментативной активности, получившей название рибозима и катализирующей самосплайсинг, т. е. отщепление интронных нетранслируемых последовательностей от предшественника РНК.

Ферменты, как и все белки, обладают рядом свойств, характерных для высокомолекулярных соединений: амфотерностью, электрофоретической подвижностью и неспособностью к диализу через полупроницаемые мембраны. Подобно белкам, ферменты имеют большую молекулярную массу: от десятков тысяч до нескольких миллионов дальтон. Им присущи все особенности структурной организации белковых молекул (первичный, вторичный, третичный и четвертичный уровни организации).

В природе существуют как простые, так и сложные ферменты (рис. 14.1). Первые целиком представлены полипептидными цепями и при гидролизе распадаются исключительно на аминокислоты. Такими ферментами являются гидролитические ферменты, в частности пепсин, трипсин, папаин, уреаза, лизоцим, рибонуклеаза, фосфатаза и др. Большинство природных ферментов относится к классу сложных белков, содержащих помимо полипептидных цепей какой-либо небелковый компонент (кофактор), присутствие которого является абсолютно необходимым для каталитической активности. Кофакторы могут иметь различную химическую природу и различаться по прочности связи с полипептидной цепью. Если константа диссоциации сложного фермента настолько мала, что в растворе все полипептидные цепи оказываются связанными со своими кофакторами и не разделяются при выделении и очистке, то такой фермент получает название холофермента(холоэнзима), а кофактор – название простетической группы, рассматривающейся как интегральная часть молекулы фермента (например, FAD, FMN, биотин, липоевая кислота). Полипептидную часть фермента принято называть апоферментом. Если же дополнительная группа легко отделяется от апофермента при диализе, в этом случае она называется коферментом (например, NAD+, NADP+). Кроме этого, роль кофактора могут выполнять металлы: Mg2+, Мn2+, Са2+ и др.

 

 

 
 

 


Рис. 14.1. Структура ферментов

 

Химическая природа кофакторов, их функции в ферментативных реакциях очень разнообразны. Согласно одной из классификаций все коферменты и простетические группы делят на 2 группы:

1. производные витаминов (табл. 14.1);

2. невитаминные кофакторы.

 

 

Таблица 14.1.

Важнейшие коферменты и простетические группы ферментов

 

Наименование Участвующий витамин Группы, подлежащие переносу
Никатинамидадениндинуклеотид (NAD, NADF) Никотинамид, витамин РР Атомы водорода (электроны)
Флавинмононуклеотид, рибофлавинфосфат (FMN, FAD) Рибофлавин, витамин В2 Атомы водорода (электроны)
Коэнзим А (СоА) Пантотеновая кислота Ацильные, ацетильные и др. группы
Тетрагидрофолиевая кислота (ТHF) Фолиевая кислота Метильные, метиленовые, формильные группы или фориминогруппы (одноуглеродные остатки)
Биоцитин Биотин, витамин Н Двуокись углерода (активная форма СО2)
Тиаминдифосфат (TDP) Тиамин, витамин В1 Альдегиды и кетоны
Пиридоксаль-5-фосфат (P5P) Пиридоксин, витамин В6 Аминогруппы, карбоксильные группы
Дезоксиаденозил- и (метил)-кобаломин (В12 - коферменты)   Цианкоаломин, витамин В12 Атомы водорода, протоны и электроны

 

К невитаминным кофакторам относят следующие соединения: НS-глутатион, АТР, липоевую кислоту, производные нуклеозидов (уридинфосфат, цитидинфосфат, фосфоаденозинфосфосульфат), порфиринсодержащие вещества и др. К ним же могут быть отнесены тРНК, которые в составе ферментов аминоацил-тРНК-синтетаз принимают активное участие в транспортировке аминокислот в рибосому, где осуществляется синтез белка.

Следует отметить одну отличительную особенность двухкомпонентных) ферментов: ни кофактор отдельно (включая большинство коферментов), ни сам по себе апофермент каталитической активностью не наделены, и только их объединение, протекающее не хаотично, а в соответствии с программой их структурной организации, обеспечивает быстрый ход химической реакции.

Более 25% всех ферментов для проявления полной каталитической активности нуждается в ионах металлов. Роль металлов в ферментативном катализе разнообразна.

 

1.Ионы металла выполняют функцию стабилизаторов молекулы субстрата, активного центра фермента и конформации белковой молекулы фермента, а именно третичной и четвертичной структур.

 

а) Ионы металлов – стабилизаторы молекулы субстрата

 

Для некоторых ферментов субстратом служит комплекс превращаемого вещества с ионом металла. Например, для большинства киназ в качестве одного из субстратов выступает не молекула АТР, а комплекс Мg2+-АТР. В этом случае ион Mg2+ не взаимодействует непосредственно с ферментом, а участвует в стабилизации молекулы АТР и нейтрализации отрицательного заряда субстрата, что упрощает его присоединение к активному центру фермента (рис. 14.2).

 

 

Рис. 14.2. Структура АТР

 

Схематично роль кофактора при взаимодействии фермента и субстрата можно представить как комплекс E-S-Me, где Е – фермент, S – субстрат, Ме – ион металла. В качестве примера можно привести расположение субстратов в активном центре гексокиназы (рис. 14.3).

 

 

Рис. 14.3. Участие ионов магния в присоединении субстрата в активном центре гексокиназы

 

В активном центре гексокиназы есть участки связывания для молекулы глюкозы и комплекса Мg2+-АТР. Гексокиназа катализирует перенос концевого g-фосфатного остатка молекулы АТР на глюкозу с образованием глюкозо-6-фосфата. Ион Mg2+ участвует в присоединении и «правильной» ориентации молекулы АТР в активном центре фермента, ослабляя фосфоэфирную связь и облегчая перенос фосфата на глюкозу.

 

б)Ионы металла – стабилизаторы активного центра фермента

 

В некоторых случаях ионы металла служат «мостиком» между ферментом и субстратом. Они выполняют функцию стабилизаторов активного центра, упрощая присоединение к нему субстрата и протекание химической реакции. В ряде случаев ион металла может способствовать присоединению кофермента. Перечисленные выше функции выполняют такие металлы, как Mg2+, Мп2+, Zn2+, Со2+, Мо2+. В отсутствие металла эти ферменты активностью не обладают. Такие ферменты получили название «металлоэнзимы». Схематично данный процесс взаимодействия фермента, субстрата и металла можно представить следующим образом: E-Me-S.

К металлоэнзимам относят, например, пируваткиназу (рис. 14.4), катализирующую реакцию превращения фосфоенолпирувата в пируват.

 

 

Рис. 14.4. Участие ионов магния в присоединении субстрата в активном центре пируваткиназы

 

Активный центр пируваткиназы имеет участки связывания дпя фосфоенолпирувата и АDP. Mg2+ участвует в стабилизации активного центра, что облегчает присоединение фосфоенолпирувата. В ходе ферментативной реакции образуется пируват и АТР.

в) Ионы металлов – роль в стабилизации третичной

и четвертичной структуры фермента

 

Ионы металлов обеспечивают сохранение вторичной, третичной, четвертичной структуры молекулы фермента. Такие ферменты в отсутствие ионов металлов способны к химическому катализу («металлоэнзимные комплексы»), однако они нестабильны. Их активность снижается и даже полностью исчезает при небольших изменениях рН, температуры и других незначительных изменениях параметров внешнего окружения. Таким образом, ионы металлов выполняют функцию стабилизаторов оптимальной конформации белковой молекулы.

Иногда в стабилизации вторичной и третичной структуры принимают участие ионы щёлочноземельных металлов. Так, для поддержания третичной конформации пируваткиназы необходимы ионы К+.

Для стабилизации четвертичной структуры алкогольдегидрогеназы, катализирующей реакцию окисления этанола, необходимы ионы цинка. Алкогольдегидрогеназа состоит из 4 субъединиц с молекулярной массой 151 кДа. В состав фермента входят 4 атома Zn2+. Удаление Zn2+ приводит к потере активности фермента за счёт диссоциации на 4 неактивные субъединицы с молекулярной массой 36 кДа (рис. 14.5).

 

Рис. 14.5. Роль ионов цинка в стабилизации четвертичной структуры алкогольдeгидрогеназы

 

2. Ионы металлов могут принимать непосредственное участие в акте катализа.

 

а) Участие в электрофильном катализе

 

Наиболее часто эту функцию выполняют ионы металлов с переменной валентностью, имеющие свободную d-орбиталь и выступающие в качестве электрофилов. Это в первую очередь такие металлы, как Zn2+, Fе2+, Mn2+, Сu2+. Ионы щёлочноземельных металлов (такие как Na+ и К+), не обладают этим свойством. В качестве примера можно рассмотреть функционирование фермента карбоангидразы. Карбоангидраза – цинксодержащий фермент, катализирующий реакцию образования угольной кислоты:

 

 

Ион Zn2+ в результате электрофильной атаки участвует в образовании Н+ и ОН¯ ионов из молекулы воды:

 

 

Протон и гидроксильная группа последовательно присоединяются к диоксиду углерода с образованием угольной кислоты:

 

 

В ходе электрофильного катализа ионы металлов часто участвуют в стабилизации промежуточных соединений.

 

б) Участие в окислительно-восстановительных реакциях

 

 
 

Ионы металлов с переменной валентностью могут также участвовать в переносе электронов. Например, в цитохромах (гемсодержащих белках) ион железа способен присоединять и отдавать один электрон:

Благодаря этому свойству цитохромы участвуют в окислительно-восстановительных реакциях.

 

3.Роль металлов в регуляции aктивности ферментов

 

Иногда ионы металлов выступают в роли регуляторных молекул. Например, ионы Са2+ служат активаторами протеинкиназы С, катализирующей реакции фосфорилирования белков. Ионы Са2+ также изменяют активность ряда кальций-кальмодулинзависимых ферментов.

Любой каталитический акт начинается с взаимодействия фермента и молекулы субстрата, то есть с тем веществом, на которое действует фермент. Участвующие в ферментативных реакциях молекулы субстратов часто имеют небольшие размеры по сравнению с молекулами ферментов. Поэтому было высказано предположение о том, что при образовании фермент-субстратных комплексов в непосредственный контакт с молекулой субстрата, очевидно, вступает ограниченная часть аминокислот пептидной цепи. Отсюда возникло представление об активном центре фермента.

Под активным центром подразумевают уникальную комбинацию аминокислотных остатков в молекуле фермента, обеспечивающую непосредственное связывание ее с молекулой субстрата и прямое участие в акте катализа (рис. 14.6). Темные полосы на рисунке – участки полипептидной цепи фермента; R – аминокислотные остатки и их порядковые номера (с N-конца). Установлено, что у сложных ферментов в состав активного центра входят также простетические группы.

 

Рис. 14. 6. Активный центр фермента

 

Аминокислотные остатки (АО), формирующие активный центр, могут находиться в различных участках полипептидной цепи, однако, непременно должны быть сближены в пространстве. Такое сближение достигается благодаря трёхмерной структуре молекулы белка.

Предполагают, что формирование активного центра фермента начинается уже на ранних этапах синтеза белка-фермента на рибосоме, когда линейная одномерная структура пептидной цепи превращается в трехмерное тело строго определенной конфигурации. Образовавшийся белок приобретает информацию совершенно нового типа, а именно функциональную (в частности, каталитическую). Любые воздействия, приводящие к денатурации, т.е. нарушению третичной структуры, приводят к искажению или разрушению структуры активного центра и соответственно потере ферментом каталитических свойств. Если при подходящих внешних условиях удается восстановить нативную трехмерную структуру белка-фермента (ренатурировать его), то восстанавливается и его каталитическая активность.

В активном центре условно различают так называемый каталитический центр, непосредственно вступающий в химическое взаимодействие с субстратом, и связывающий центр, или контактную («якорную») площадку, которая обеспечивает специфическое сродство к субстрату и формирование его комплекса с ферментом. В свою очередь молекула субстрата также содержит функционально различные участки: например, субстраты эстераз или протеиназ – одну специфическую связь (или группу атомов), подвергающуюся атаке со стороны фермента, и один или несколько участков, избирательно связываемых ферментом (рис. 14.7).

 

 

Рис. 14.7. Структура активного центра молекулы химотрипсина

 

Обычно активный центр формируют 12-16 аминокислотных остатков, иногда их может быть больше. Кроме аминокислотных остатков, участвующих в формировании активного центра выделяют ещё два их типа: вспомогательные, которые находятся рядом с активным центром и влияют на его реакционную способность; способствующие, которые удалённы АО, влияющие на конформацию всей молекулы фермента. Таким образом, от 1/2 до 2/3 всех АО ферментативного белка прямо или косвенно участвует в работе активного центра. Число активных центров в олигомерных ферментах может быть равно числу субъединиц, т. е. по одному активному центру на 1 субъединицу. Например, лактатдегидрогеназа состоит из четырёх субъединиц, каждая из которых имеет по активному центру. Активный центр может образовываться на месте контакта двух субъединиц. Тогда число активных центров будет меньше числа субъединиц.

Помимо активного центра в молекуле фермента может присутствовать также аллостерический центр (от греч. allos – другой, иной и steros – пространственный, структурный), представляющий собой участок молекулы фермента, с которым связываются определенные, обычно низкомолекулярные, вещества (эффекторы, или модификаторы), молекулы которых отличаются по структуре от субстратов. Иногда этих центров может быть несколько. Присоединение эффектора к аллостерическому центру изменяет третичную и часто также четвертичную структуру молекулы фермента и соответственно конфигурацию активного центра, вызывая снижение или повышение энзиматической активности. Ферменты, активность каталитического центра которых изменяется под влиянием аллостерических эффекторов, связывающихся с аллостерическим центром, получили название аллостерических ферментов.

Внутри клеток разных тканей и в самой клетке ферменты распределены неодинаково. Впервые это показал О. Варбург, который в 1913 г. определил, что процесс клеточного дыхания связан с осаждаемыми внутриклеточными частицами. Развитие метода дифференциального ультрацентрифугирования ускорило изучение внутриклеточной локализации ферментов. Биохимический анализ отдельных клеточных фракций показал, что ферменты расположены в различных органеллах соответственно их функции в обмене веществ (табл. 14.2).

В цитозоле (растворимая фракция) содержатся ферменты гликолиза, пентозофосфатного пути распада глюкозы, активации аминокислот, синтеза и распада гликогена, ферментный комплекс – синтетаза жирных кислот и др.

В митохондриях происходит большинство обменных процессов, которые обеспечивают энергией всю клетку. В них локализованы ферменты цикла Кребса, окислительного фосфорилирования, окисления жирных кислот, глутаматдегидрогеназа, синтетаза аминолевулиновой кислоты и др.

Лизосомы участвуют в процессах внутриклеточного переваривания. Содержат около 30 ферментов, главным образом гидролазы: рибонуклеазу, эстеразы, протеазы, Р-глюкуронидазу и др. Лизосомальные ферменты представляют интерес для медицины вследствие их участия в воспалительных процессах, повреждениях клеток, рассасывании ткани и некоторых наследственных метаболических заболеваниях.

Микросомальная фракция включает рибосомы и эндоплазматический ретикулум, где содержатся ферменты синтеза белков, холинэстераза, церулоплазмин, глюкозо-6-фосфатаза, g-глутамилтранспептидаза, ферменты конъюгации и др.

В ядре предположительно около 40 ферментов, в число которых входят репликативный комплекс, РНК-полимераза и, по-видимому, NАD-синтетаза.

Клеточная (плазматическая) мембрана содержит ферменты транспорта веществ – транслоказы, аденилатциклазу, 5-нуклеотидазу и некоторые др.

 

Таблица 14.2

Локализация некоторых ферментов внутри клетки

 

Компартмент клетки Ферменты
Цитозоль   амилаза, липаза панкреатическая, глицеро-3-фосфатде-гидрогеназа, гистидаза, сорбитолдегидрогеназа, лактатдегидрогеназа, алкогольдегидрогеназа, креатинкиназа, глюкозо-б-фосфатдегидрогеназа, аланинаминотрансфераза, аспартатаминотрансфераза, гликогенсинтетаза
Митохондрия   пируватдегидрогеназный комплекс, цитратсинтаза, малатдегидрогеназа, уроканиназа, глутаматдегидрогеназа, креатинкиназа, ацил-СоА-дегидрогеназа, d-аминолевулинатсинтетаза, аспартатаминотрансфераза, пируваткиназа
Лизосомы   кислая фосфатаза, a-галактозидаза, b-галактозидаза, гиалуронидаза, коллагеназа, b-глюкуронидаза, арилсульфатаза, кислая рибонуклеаза, кислая дезоксирибонуклеаза, катепсин, a-маннозидаза
Микросомы   глюкозо-6-фосфатаза, g-глутамил транспептидаза, моноаминокси даза, церулоплазмин, глюкуронидтрансфераза
Ядро ДНК-полимераза, ДНК-лигаза, топоизомераза, эндонуклеаза, РНК-полимераза, хеликаза, NAD-синтетаза
Клеточная мембрана   нуклеотидаза, щелочная фосфатаза, g-глутамил транспептидаза, K+,Na+-ATPаза, аденилатциклаза  

 

Активность ряда ферментов обнаруживается одновременно в нескольких органеллах.