Строение железоуглеродистых сплавов

Твердые растворы

Твердыми растворами называют фазы, в которые один из компонентов сплава сохраняет свою кристаллическую решетку, а атомы других (или другого) компонентов располагаются в решетке первого компонента (растворителя), изменяя ее размеры (периоды). Таким образом, твердый раствор, состоящий из двух или нескольких компонентов, имеет один тип решетки и представляет собой одну фазу.

Твердый раствор существует в интервале концентраций компонентов.

Различают твердые растворы замещения и твердые растворы внедрения (рис. 2).

Рисунок 2. Схемы твердых растворов: а – чистый металл; б – твердый раствор замещения; в - твердый раствор внедрения

Эти растворы присущи железоуглеродистым сплавам: сталям, чугунам.

При образовании твердого раствора замещения атомов растворенного компонента замещают часть атомов растворителя в его кристаллической решетке. Замещаться могут любые атомы.

При образовании твердого раствора внедрения атомов растворенного компонента располагаются в междоузлиях (пустотах) кристаллической решетки растворителя (при этом пустоты должны обладать определенным пространством). Большие поры 0,74–0,41 R, маленькие поры 0,68–0,291R.

В ГЦК – решетке атомы располагаются в октаэдрической поре (центры решеток). В этой поре может поместиться сфера радиусом 0,41R, где R – радиус атомов в узлах решетки.

В ОЦК – решетке атомы располагаются в тетраэдрическом междоузлии, размер поры (0,291 R).

Атомы растворителя и растворенного компонента различны по размерам, поэтому при образовании твердого раствора кристаллическая решетка всегда искажается, и периоды ее изменяются.

При образовании твердого раствора замещения период решетки может увеличиваться или уменьшаться. При образовании твердого раствора внедрения период решетки растворителя всегда возрастает (рис. 3).

Рисунок 3. Искажение кристаллической решетки при образовании твердого раствора замещения и внедрения

Атомы растворенного компонента нередко скапливаются у дислокаций, снижая их упругую энергию (рис. 4).

Атомы внедрения располагаются в растянутой области под краем экстраплоскости, образуя так называемые атмосферы Котрелла (рис. 4).

 

Рисунок 4. Образование атмосферы Котрелла: а – атомы компонента В, образующие твердый раствор замещения, и атомы С, образующие твердый раствор внедрения, беспорядочно расположены в решетке компонента А; б и в-атомы компонентов В и С переместились к дислокации, в результате чего энергия решетки понизилась

Все металлы в той или иной степени могут растворяться друг в друге, в твёрдом состоянии например: в Al до 5,5% Сu; в Сu до 39% Zn.

Твёрдые растворы замешения с неограниченной (в любых количественных соотношениях) растворимостью (рис. 5) могут образовываться при соблюдении условий приведенных ниже:

1. Компоненты должны обладать одинаковыми по типу (изоморфными) кристаллическими решётками. Только в этом случаи при изменении концентрации твёрдого раствора будет возможен непрерывный переход от кристаллической решётки одного компонента к решётке другого компонента.

2. Различие в атомных размерах (R) компонентов должно быть незначительным и не превышать 8 – 15%.

3. Компоненты должны принадлежать к одной и той же группе элементов периодической системы элементов или к смежным родственным группам и иметь близкое строение электронных оболочек атомов.

 

Рисунок 5. Кристаллические решетки твердых растворов замещения при неограниченной растворимости компонентов

Примеры сплавов, в которых образуется непрерывный ряд твердых растворов:

Cu (29) и Ni (28) (R=2.7%),

Fe (26) и Ni (28),

Fe (26) и Cr (24),

Ag и Au (R=0.2%),

Mo и W (R=9.9%),

V и Ti (R=2.0%),

Fe и Co – не растворяются.

Твёрдые растворы внедрения образуются только в тех случаях, когда диаметр атома растворенного элемента невелик (R вн. ат./ Rраствор > 0,59).

Твёрдые растворы этого типа получаются лишь при растворении в металле (Fe, Mo, Cr и т.д.) углерода (атомный радиус 0,77А°), азота (0,71А°), водорода (0,46А°), т.е. элементов с малым атомным радиусом.

Твёрдые растворы внедрения могут быть только ограниченными по концентрации, поскольку число пор в решетке ограничено, а атомы основного компонента сохраняются в узлах решетки.

Упорядоченные твёрдые растворы

В сплавах Cu и Au, Fe и Al, Fe и Si, Ni и Mn, образующих при высоких температурах растворы замещения с неупорядочнным размещением атомов компонентов, при медленном охлаждении или нагреве, выдержке при высоких температурах протекает процесс перераспределения атомов. В результате, которого атомы компонентов занимают определённые положения (рис. 6) в кристаллической решётке. Т.о. образуется упорядоченный твёрдый раствор или сверхструктура.

Рисунок 6. Кристаллические решетки упорядоченных твердых растворов: а – CuZn, б – CuAu, в – Сu3Au

Образование сверхструктуры сопровождается изменением свойств (например в сплаве пермаллой (железо и 78,5% никеля) ухудшается магнитная проницаемость, повышается твердость, снижается пластичность и изменяется электросопротивление).

Упорядоченные растворы образуются, когда отношение компонентов в сплаве (ат.%) постоянно: 1:1 (CuAu); 1:2; 1:3 (Сu3Au); и т.д. (можно приписать формулу химического соединения CuAu, Cu3Au).

Упорядоченные твердые растворы можно рассматривать как промежуточные фазы между твердыми растворами и химическими соединениями.

В упорядоченных твердых растворах сохраняется решетка растворителя, но имеется правильное расположение атомов и резное изменение свойств характерное для химических соединений.

 

Железоуглеродистые сплавы

Железоуглеродистые сплавы, сплавы железа с углеродом на основе железа. Варьируя состав и структуру, получают железоуглеродистые сплавы с разнообразными свойствами, что делает их универсальными материалами.

Различают: чистые железоуглеродистые сплавы (со следами примесей), получаемые в небольших количествах для исследовательских целей и технические железоуглеродистые сплавы — стали (до 2%С) и чугуны (св. 2% С), мировое производство которых измеряется сотнями млн. т.

Технические железоуглеродистые сплавы содержат примеси. Их делят на обычные (фосфор Р, сера S, марганец Mn, кремний Si, водород Н, азот N, кислород О), легирующие (хром Cr, никель Ni, молибден Mo, вольфрам W, ванадий V, титан Ti, кобальт Со, медь Cu и др.) и модифицирующие (магний Mg, церий Ce, кальций Ca и др.).

В большинстве случаев основой, определяющей строение и свойства сталей и чугунов, является система Fe — С. Начало научному изучению этой системы положили русские металлурги П. П. Аносов (1831) и Д. К. Чернов (1868).

Аносов впервые применил микроскоп при исследовании железоуглеродистые сплавы, а Чернов установил их кристаллическую природу, обнаружил дендритную кристаллизацию и открыл в них превращения в твёрдом состоянии.

Из зарубежных учёных, способствовавших созданию диаграммы состояния Fe — С сплавов, следует отметить Ф. Осмонда (Франция), У. Ч. Робертса-Остена (Англия), Б. Розебома (Голландия) и П. Геренса (Германия).

 

Фазовые состояния.

Железоуглеродистые сплавы при разных составах и температурах описываются диаграммами стабильного (рис. 1, а) и метастабильного (рис. 1, б) равновесий. В стабильном состоянии в железоуглеродистые сплавы встречаются жидкий раствор углерода в железе (Ж), три твёрдых раствора углерода в полиморфных модификациях железа (табл. 1)

Рис. 1a. Диаграммы состояния железоуглеродистых сплавов: состояние стабильных равновесий.

Рис. 1в. Диаграммы состояния железоуглеродистых сплавов: состояния с двойными линиями.

 

Рис. 1б. Диаграммы состояния железоуглеродистых сплавов: состояние метастабильных равновесий.

Таблица 1.— Кристаллические фазы железоуглеродистых сплавов.

Название фазы Природа фазы Структура
a-феррит Твердый раствор внедрения углерода в a-Fe Объемноцен трированная кубическая
Аустенит Твердый раствор внедрения углерода в g-Fe Гранецентри рованная кубическая
d-феррит Твердый раствор внедрения углерода в d-Fe Объемноцен трированная кубическая
Графит Полиморфная модификация углерода Гексогональная слоистая
Цементит Карбид железа Fe2C Ромбическая

a-раствор (a-феррит), g-раствор (аустенит) и d-раствор (d-феррит), и графит (Г).

В метастабильном состоянии в железоуглеродистые сплавы встречаются a-, g-, d-растворы и карбид железа Fe3C — цементит (Ц). Области устойчивости железоуглеродистых сплавов в однофазных и двухфазных состояниях указаны на диаграммах. При некоторых условиях в железоуглеродистых сплавах могут существовать в равновесии и три фазы. При температурах НВ возможно перитектическое равновесие d + g + Ж, E’C’F’ — эвтектическое стабильное равновесие g + Ж + Г; при ECF — эвтектическое метастабильное равновесие g + Ж + Ц; при P'S'K' — эвтектоидное стабильное равновесие a + g + Г', при PSK — эвтектоидное метастабильное равновесие a + g + Ц.

Диаграммы а и б вычерчиваю и в одной координатной системе (рис. 1, в). Такая сдвоенная диаграмма наглядно характеризует относительное смещение однотипных линий равновесия и облегчает анализ железоуглеродистых сплавов, содержащих стабильные и метастабильные фазы одновременно.

Основной причиной появления в железоуглеродистых сплавах высокоуглеродистой метастабильной фазы в виде цементита являются трудности формирования графита.

Образование графита в жидком растворе Ж и твёрдых растворах a и g связано с практически полным удалением атомов железа из участков сплава, где зарождается и растет графит. Оно требует значительных атомных передвижений. Если железоуглеродистые сплавы охлаждаются медленно или длительно выдерживаются при повышенных температурах, атомы железа успевают удалиться из мест, где формируется графит, и тогда возникают стабильные состояния.

При ускоренном охлаждении и недостаточных выдержках удаление малоподвижных атомов железа задерживается, почти все они остаются на месте, и тогда в жидких и твёрдых растворах зарождается и растет цементит. Необходимая для этого диффузия легкоподвижных при повышенных температурах атомов углерода, не требующая больших выдержек, успевает происходить и при ускоренном охлаждении.

Помимо основных фаз, указанных на диаграммах, в технических железоуглеродистые сплавы встречаются небольшие количества и др. фаз, появление которых обусловлено наличием примесей. Часто встречаются сульфиды (FeS, MnS), фосфиды (Fe3P), окислы железа и примесей (FeO, MnO, Al2O3, Cr2O3, TiO2 и др.), нитриды (FeN, AlN) и др. неметаллические фазы. Точечными линиями на диаграммах отмечены точки Кюри, наблюдающиеся в железоуглеродистых сплавах в связи с магнитными превращениями феррита (768°С) и цементита (210°С).

Строение железоуглеродистых сплавов

Строение железоуглеродистых сплавов определяется составом, условиями затвердевания и структурными изменениями в твёрдом состоянии.

В зависимости от содержания углерода железоуглеродистые сплавы делят на стали и чугуны. Стали с концентрацией углерода, меньшей чем эвтектоидная S' и S, называют доэвтектоидными, а более высокоуглеродистые — заэвтектоидными. Чугуны с концентрацией углерода, меньшей чем эвтектическая C1 и С, называют доэвтектическими, а более высокоуглеродистые — заэвтектическими.

Затвердевание сталей, содержащих до 0,5% С, начинается с выпадения кристаллов 8-раствора обычно в виде дендритов. При концентрациях углерода до 0,1% кристаллизация заканчивается образованием однофазной структуры d-раствора. Стали с 0,1—0,5% С после выделения некоторого количества 8-раствора испытывают перитектическое превращение Ж + d —> g. В интервале концентраций 0,10—0,16% С оно приводит к полному затвердеванию, а в интервале 0,16—0,50% С кристаллизация завершается при охлаждении до температуры линии IE. В железоуглеродистых сплавах с 0,5—4,26% С кристаллизация начинается с выделения g-раствора также в виде дендритов. Стали полностью затвердевают в интервале температур, ограниченном линиями ВС и IE, приобретая однофазную аустенитную структуру. Затвердевание же чугунов, начинаясь с выделения избыточного (первичного) gраствора, заканчивается эвтектическим распадом остатка жидкости по одному из трёх возможных вариантов: Ж ®g+ Г, Ж ® g+ Ц или Ж ® (+ Г + Ц.

В первом случае получаются т. н. серые чугуны, во втором — белые, в третьем — половинчатые. В зависимости от условий кристаллизации графит выделяется в виде разветвленных или шаровидных включений, а цементит — в виде монолитных пластин или проросших разветвленным аустенитом.

В железоуглеродистых сплавах, содержащих более 4,26—4,3% С, кристаллизация переохлажденного ниже линии D1C1 расплава в условиях медленного охлаждения начинается с образования первичного графита разветвленной или шаровидной формы. В условиях ускоренного охлаждения (при переохлаждениях ниже линии DC) образуются пластины первичного цементита. При промежуточных скоростях охлаждения выделяются и графит, и цементит. Кристаллизация заэвтектических чугунов, так же как и доэвтектических, завершается распадом остатка жидкости на смесь gраствора с высокоуглеродистыми фазами.

Строение затвердевших железоуглеродистых сплавов существенно изменяется при дальнейшем охлаждении. Эти изменения обусловлены полиморфными превращениями железа, уменьшением растворимости в нём углерода, графитизацией цементита. Структура может изменяться в твёрдом состоянии в результате процессов рекристаллизации твёрдых растворов, сфероидизации кристаллов (из неравноосных становятся равноосными), коалесценции (одни кристаллы цементита укрупняются за счёт других) высокоуглеродистых фаз.

 

МИКРОСКОПИЧЕСКИЙ АНАЛИЗ МЕТАЛЛОВ И СПЛАВОВ. (МИКРОАНАЛИЗ) НАЗНАЧЕНИЕ МИКРОАНАЛИЗА Микроанализ - изучение строения и пороков металла с помощью микроскопа ,т.е. при больших увеличениях . Исследованию подвергают специально приготовленные микрошлифы. Микроанализ позволяет определить форму и размер кристаллических зерен в металле, выявлять микропороки , неметаллические включения , определять химический состав некоторых структурных составляющих по их характерной форме и т.д. Микроскопический анализ состоит из приготовления микрошлифов и исследования их под микроскопом . Приготовление микрошлифов складывается из: 1) выбора места на детали для вырезки образца; 2) отрезки и заторцовки шлифа; 3) шлифования; 4) полирования. » Совершенно новые окна пвх производятся по инновационным технологиям. 1. Выбор места на детали для вырезки образца. Образец должен быть вырезан из такого места в рабочей части детали , которое давало бы характеристику внутреннего строения , обеспечивало бы условия службы детали и технологию ее изготовления . Например , в шестерне , где рабочей частью является зубчатый венец , для исследования структуры берется один или несколько зубьев , а в самом зубе исследуется поверхностный слой и его сердцевина . В коленчатом вале исследуется шейка вала в поверхностном слое в сердцевине . 2. Отрезка и заторцовка шлифа. Эта операция проводится ножовкой или на токарном станке .Если металл очень твердый , образец отрезают посредством тонкого алундового или карборундового круга . Исследуемую поверхность образца заторцовывают на плоскость на наждачном круге или опиливают напильником . Отрезку и заторцовку следует производить с охлаждением образца водой , чтобы не повлиять на изменение его структуры. Наиболее удобными размерами микрошлифа является цилиндр диаметром 12 мм и высотой 10 мм или параллелепипед с площадью основания 12х12мм при той же высоте . Образцы малых размеров (проволока , тонкий лист ) занимают в специальных струбцинках или заливают в металлических кольцах в легкоплавкие материалы ( сплав бура , сера , бакелит , полистирол ) . 3. Шлифование. Заточенный образец шлифуется на шлифовальной бумаге, до полного удаления рисок, с постепенным переходом от бумаги с абразивом №12-3 с зернистостью 150-25 мк до бумаги микронной зернистостью №М40-М5 с зернистостью от 40 до 8,5 мк . При переходе с одного номера зернистости на другой необходимо очищать образец от абразива и менять направление шлифовки на 90 . Шлифовальные шкурки на бумажной и тканевой основе соответственно по ГОСТам 6456-68, 5009-68. Зернистос- ть абразивного материала шлифовальных шкурок определена ГОСТом 3647-59. Шлифовка образцов производиться либо вручную , когда шлифовальная бумага кладется на ровные плоские плиты (стекло , мрамор ) , либо на специальных шлифовальных станках , с закреплением шлифовальной бумаги на вращающихся дисках или лентах . Для шлифовки образцов , кроме шлифовальной бумаги можно применять специальные пасты . Паста ГОИ , в состав которой входит окись хрома , стеарин , олеиновая кислота , сода , керосин , применяется для шлифовки черных металлов. Она имеет три сорта зернистости (тонкая , средняя , грубая ) . Хромоалюминиевые пасты для сталей отличаются от пасты ГОИ , в основном добавкой окиси алюминия . Пасты наносятся на бумагу или сукно . Шлифовка на пастах ведется после обработки образца на грубой и средней шлифовальной бумаге ( №220 ). При шлифовке мягких металлов рекомендуется смачивать шлифовальную бумагу керосином , а при обработке цветных металлов покрывать ее тонким слоем парафина . Образец после окончательной шлифовки тщательно очищается от абразива и полируется до полного исчезновения рисок. 4. Полирование. Предварительное полирование проводят на специальном полировальном станке с кругом диаметром 200-250 мм , обтянутым грубым сукном , со скоростью 400-600 об/мин. Сукно смачивается полировальной жидкостью, которая составляется путем смешения 10-15 граммов окиси хрома или 5 граммов окиси алюминия в одном литре воды. Окончательное полирование ведется на тонком мягком сукне ( фетре ) , смачиваемом тонкой взвесью тех же окислов , до полного уничтожения рисок и получения зеркальной поверхности , что занимает при хорошо отшлифованной поверхности 5-7 мин . После полирования шлиф промывают водой, затем спиртом и сушат на воздухе или, прикладывая его к фильтровальной бумаге. Наиболее совершенный способ полирования – электрохимический. Сущность его состоит в том что, шлифованный образец, в качестве анода, помещают в электролит ( H2SO4 ) и присоединяют к положительному источнику тока : катодом является свинцовая или цинковая пластинки, расположенные на определенном расстоянии от полируемой поверхнос- ти. При достаточной плотности тока неровности поверхности шлифа растворяются, и она получается гладкой и блестящей.