Формулы Крамера. Метод обратной матрицы

Системы n линейных уравнений с n переменными имеют вид:

(2)

 

Матрица такой системы является квадратной, и ей соответствует определитель - го порядка , называемый главным определителем системы. Решение системы (2), в случае , может быть найдено по формулам Крамера.

 

,

 

где - вспомогательные определители системы.

Главный определитель системы состоит из коэффициентов при переменных, а вспомогательные составляют из главного, заменяя столбец коэффициентов (при соответствующей переменной) столбцом свободных членов.

 

 

Если , то система имеет единственное решение;

если , то система имеет бесконечно много решений;

если и какой-либо из вспомогательных определителей не равен нулю, то система не имеет решений (или имеет (пустое множество) решений).

 

Метод обратной матрицы

Запишем систему (2) в матричном виде и решим матричное уравнение:

 

 

 

Матричное уравнение может иметь и другой вид:

 

Метод Гаусса

 

Одним из наиболее универсальных методов решения алгебраических систем является метод Гаусса, состоящий в последовательном исключении переменных.

Пусть дана система уравнений:

 

На первом этапе (прямой ход) систему уравнений приводим к ступенчатому (в частном случае, когда , к треугольному ) виду с помощью элементарных преобразований.

На втором этапе ( обратный ход) последовательно определяем значения переменных из полученной ступенчатой системы.

Если ступенчатая система окажется треугольной, то исходная система имеет единственное решение. Из последнего уравнения находим значение , из предпоследнего - , и далее, поднимаясь по системе вверх, найдем значения всех остальных переменных .

Если в результате элементарных преобразований появляются уравнения , то их вычеркиваем. Если же появляется уравнение , то это свидетельствует о несовместности системы.

Преобразования Гаусса удобнее проводить не с самой системой, а с ее расширенной матрицей, выполняя элементарные преобразования над строками.

Удобно, чтобы коэффициент был равен . Для этого можно переставить уравнения системы либо разделить обе части первого уравнения на .

Пример 1.Решить систему уравнений методом Гаусса

¦ Прямой ход.

1. Выберем «ведущим» третье уравнение и запишем его на первое место.

2. Запишем расширенную матрицу системы и выполним элементарные преобразования над ее строками:

~ ~
первую строку перепишем, а вторую и третью заменим суммой с первой, умноженной соответственно на и на ; разделим вторую строку на .
~ ~
первую и вторую строки перепишем, а третью заменим суммой ее со второй , умноженной на ; из этой матрицы запишем систему треугольного вида.

Обратный ход.

Из третьего уравнения находим значение , из второго - значение , из первого - значение .

Ответ: . ˜

Пример 2.Решить систему уравнений

¦ Запишем расширенную матрицу системы. Выполняя элементарные преобразования над ее строками, получим:

~ ~

~ ~ .

 

Из последней матрицы запишем систему

Из третьего уравнения находим значение , из второго - значение .

Так как уравнений в системе осталось меньше, чем переменных, то из первого уравнения выражаем через ( - свободная переменная, т.е. - любое число ).

Следовательно, система уравнений имеет бесконечно много решений.

Ответ: , где - любое число. ˜

 



php"; ?>