Механические гармонические колебания

Пусть материальная точка совершает пря­молинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало коорди­нат. Тогда зависимость координаты х от времени t задается уравнением, аналогич­ным уравнению (140.1), где s=x:

х=Аcos(w0t+j). (141.1)

Согласно выражениям (140.4) и (140.5), скорость v и ускорение а колеблющейся точки соответственно равны

Сила F=ma, действующая на колеблю­щуюся материальную точку массой т, с учетом (141.1) и (141.2) равна

F= -mw20x.

Следовательно, сила пропорциональна смещению материальной точки из положе­ния равновесия и направлена в противопо­ложную сторону (к положению равнове­сия).

Кинетическая энергияматериальной точки, совершающей прямолинейные гар­монические колебания, равна

Потенциальная энергияматериальной точки, совершающей гармонические коле­бания под действием упругой силы F, равна

Сложив (141.3) и (141.5), получим форму­лу для полной энергии:

Полная энергия остается постоянной, так как при гармонических колебаниях спра­ведлив закон сохранения механической энергии, поскольку упругая сила консер­вативна.

Из формул (141.4) и (141.6) следует, что Т и П изменяются с частотой 2w0, т. е. с частотой, которая в два раза превы­шает частоту гармонического колебания.

 

 

На рис. 200 представлены графики зави­симости х, Т и П от времени. Так как <sin2a>= <cos2aa>=1/2, то из формул (141.3), (141.5) и (141.7) следует, что <Т> = <П>=1/2E.

 

Гармонический осциллятор.

 

Гармоническим осциллятором называется система, совершающая колебания, описы­ваемые уравнением вида (140.6):

Колебания гармонического осциллятора являются важным примером периодиче­ского движения и служат точной или при­ближенной моделью во многих задачах классической и квантовой физики. При­мерами гармонического осциллятора яв­ляются пружинный, физический и матема­тический маятники, колебательный контур (для токов и напряжений столь малых, что элементы контура можно было бы считать линейными; см. §146).

 

Затухающие колебания

Рассмотрим свободные затухающие коле­бания— колебания, амплитуда которых из-за потерь энергии реальной колебатель­ной системой с течением времени умень­шается. Простейшим механизмом умень­шения энергии колебаний является ее пре­вращение в теплоту вследствие трения в механических колебательных системах,

а также омических потерь и излучения электромагнитной энергии в электриче­ских колебательных системах.

Закон затухающих колебаний опреде­ляется свойствами колебательных систем. Обычно рассматривают линейные систе­мы— идеализированные реальные систе­мы, в которых параметры, определяющие физические свойства системы, в ходе про­цесса не изменяются. Линейными система­ми являются, например, пружинный маят­ник при малых растяжениях пружины (когда справедлив закон Гука), колеба­тельный контур, индуктивность, емкость и сопротивление которого не зависят ни от тока в контуре, ни от напряжения. Различ­ные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями, что по­зволяет подходить к изучению колебаний различной физической природы с единой точки зрения, а также проводить их моде­лирование, в том числе и на ЭВМ.

Дифференциальное уравнение свобод­ных затухающих колебанийлинейной системы задается в виде

где s — колеблющаяся величина, описы­вающая тот или иной физический про­цесс, d=const — коэффициент затухания,w0 — циклическая частота свободных не­затухающих колебаний той же колебатель­ной системы, т. е. при d=0 (при отсутствии потерь энергии) называется собственной частотойколебательной системы.

Решение уравнения (146.1) рассмот­рим в виде

s=e-du (146.2)

где u=u(t). После нахождения первой и второй производных выражения (146.2) и подстановки их в (146.1) получим

Решение уравнения (146.3) зависит от знака коэффициента перед искомой вели­чиной. Рассмотрим случай, когда этот ко­эффициент положителен:

w2=w20-d2 (146.4)

(если (w2-d2)>0, то такое обозначение мы вправе сделать). Тогда получим урав­нение типа (142.1)

решением которого является функция и=А0cos(wt+j)

(см. (140.1)).

Таким образом, решение уравнения (146.1) в случае малых затуханий (d2<<w20)

s=A0е-dtсоs(wt+j), (146.5) где А=А0е-dt (146.6)

— амплитуда затухающих колебаний

a0— начальная амплитуда. Зависимость (146.5) показана на рис.208 сплошной линией, а зависимость (146.6) — штри­ховыми линиями. Промежуток времени t=1/d, в течение которого амплитуда за­тухающих колебаний уменьшается в е раз, называется временем релаксации.

Затухание нарушает периодичность колебаний, поэтому затухающие колеба­ния не являются периодическими и, строго говоря, к ним неприменимо понятие перио­да или частоты. Однако если затухание мало, то можно условно пользоваться по­нятием периода как промежутка времени между двумя последующими максимума­ми (или минимумами) колеблющейся фи­зической величины (рис. 208). Тогда пери­од затухающих колебаний с учетом формулы

(146.4) равен

 

Если A(t) и A(t+T)— амплитуды двух последовательных колебаний, соответству­ющих моментам времени, отличающимся на период, то отношение

называется декрементом затухания, а его

логарифм

— логарифмическим декрементом затуха­ния;Ne — число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания — постоянная для данной колебательной системы величина.

Для характеристики колебательной системы пользуются понятием добротно­стиQ, которая при малых значениях лога­рифмического декремента равна

(так как затухание невелико (d2<<w20), то Т принято равным Т0).

Из формулы (146.8) следует, что до­бротность пропорциональна числу колеба­ний Ne, совершаемых системой за время релаксации.

Применим выводы, полученные для свободных затухающих колебаний линей­ных систем, для колебаний различной фи­зической природы — механических (в ка­честве примера рассмотрим пружинный маятник) и электромагнитных (в качестве примера рассмотрим электрический коле­бательный контур).

1. Свободные затухающие колебания пружинного маятника.Для пружинного маятника (см. § 142) массой т, совершаю­щего малые колебания под действием уп­ругой силы F=-kx, сила трения про­порциональна скорости, т. е.

 

 

где r — коэффициент сопротивления;знак минус указывает на противоположные на­правления силы трения и скорости.

При данных условиях закон движения маятника будет иметь вид

Используя формулу w0=Ök/m (см. (142.2)) и принимая, что коэффици­ент затухания

d=r/(2m), (146.10)

получим идентичное уравнению (146.1) дифференциальное уравнение затухающих колебаний, маятника:

Из выражений (146.1) и (146.5) вытекает, что маятник колеблется по закону

х=A0е-dtcos(wt+j) с частотой w=Ö(w20-r2/4m2) (см. (146.4)).

Добротность пружинного маятника,

согласно (146.8) и (146.10), Q=1/rÖkm.

 

 

19. Вынужденные колебания,

колебания, возникающие в какой-либо системе под действием переменной внешней силы (например, колебания мембраны телефона под действием переменного магнитного поля, колебания механической конструкции под действием переменной нагрузки и т.д.). Характер В. к. определяется как характером внешней силы, так и свойствами самой системы. В начале действия периодической внешней силы характер В. к. изменяется со временем (в частности, В. к. не являются периодическими), и лишь по прошествии некоторого времени в системе устанавливаются периодические В. к. с периодом, равным периоду внешней силы (установившиеся В. к.). Установление В. к. в колебательной системе происходит тем быстрее, чем больше затухание колебаний в этой системе.

 

В частности, в линейных колебательных системах при включении внешней силы в системе одновременно возникают свободные (или собственные) колебания и В. к., причём амплитуды этих колебаний в начальный момент равны, а фазы противоположны (рис.). После постепенного затухания свободных колебаний в системе остаются только установившиеся В. к.

 

Амплитуда В. к. определяется амплитудой действующей силы и затуханием в системе. Если затухание мало, то амплитуда В. к. существенно зависит от соотношения между частотой действующей силы и частотой собственных колебаний системы. При приближении частоты внешней силы к собственной частоте системы амплитуда В. к. резко возрастает — наступает резонанс. В нелинейных системах разделение на свободные и В. к. возможно не всегда.

 

 

20. Математический маятник

Математический маятник—это идеализированная система, состоящая из материальной точки массой т, подвешен­ной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тя­жести. Хорошим приближением математи­ческого маятника является небольшой тя­желый шарик, подвешенный на тонкой длинной нити.

Момент инерции математического маятника J=ml2, (142.8)

где l — длина маятника.

Так как математический маятник мож­но представить как частный случай физи­ческого маятника, предположив, что вся его масса сосредоточена в одной точке — центре масс, то, подставив выражение (142.8) в формулу (142.7), получим вы­ражение для периода малых колебаний математического маятника

T=2pÖl/g. (142.9)

Сравнивая формулы (142.7) и (142.9), видим, что если приведенная длина L фи­зического маятника равна длине l матема­тического маятника, то их периоды коле­баний одинаковы. Следовательно, приве­денная длина физического маятника —это длина такого математического маятни­ка, период колебаний которого совпадает с периодом колебаний данного физическо­го маятника.

 

 

21. Физический маятник

Физический маятник —это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси подвеса, не проходя­щей через центр масс тела (рис.201).

Если маятник отклонен из положения равновесия на некоторый угол а, то в со­ответствии с уравнением динамики враща­тельного движения твердого тела (18.3) момент М возвращающей силы можно записать в виде

где У — момент инерции маятника относи­тельно оси, проходящей через точку О, l — расстояние между точкой подвеса и цент­ром масс маятника, Ft=-mgsina»mga — возвращающая сила (знак минус обусловлен тем, что направления Ft и a всегда противоположны; sina»a соответствует малым колебаниям маятни­ка, т. е. малым отклонениям маятника из положения равновесия).

Уравнение (142.4) можно записать в виде

Принимая

w0mgl/J. (142.5) получим уравнение

идентичное с (142.1), решение которого (140.1) известно:

a=a0cos(w0t+j). (142.6)

Из выражения (142.6) следует, что при малых колебаниях физический маят­ник совершает гармонические колебания с циклической частотой w0 (см (142.5)) и периодом

Т = 2p/w0=2pÖJ/(mgl)=2pÖL/g.

(142.7)

где L = J/(ml) — приведенная длина физи­ческого маятника.

Точка О' на продолжении прямой ОС, отстоящая от оси подвеса на расстоянии приведенной длины L, называется центром качанийфизического маятника (рис. 201). Применяя теорему Штейнера (16.1), по­лучим

т. е. ОО' всегда больше ОС. Точка подвеса О и центр качаний О' обладают свойством взаимозаменяемости:если ось подвеса пе­ренести в центр качаний, то точка О пре­жней оси подвеса станет новым центром качаний и период колебаний физического маятника не изменится.

 

 

22. Сложение гармонических колебаний одного направления и одинаковой частоты.Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания не­обходимо сложить. Сложим гармониче­ские колебания одного направления и оди­наковой частоты

воспользовавшись методом вращающего­ся вектора амплитуды (см. § 140). Постро­им векторные диаграммы этих колебаний (рис.203). Так как векторы a1 и А2 вра­щаются с одинаковой угловой скоростью w0, то разность фаз (j2-j1) между ними остается постоянной.

Очевидно, что уравнение результирую-

 

 

щего колебания будет

х=х12cos(w0t+j). (144.1)

В выражении (144.1) амплитуда А и начальная фаза j соответственно за­даются соотношениями

Таким образом, тело, участвуя в двух гар­монических колебаниях одного направле­ния и одинаковой частоты, совершает так­же гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (j2-j1) складываемых ко­лебаний.

Проанализируем выражение (144.2) в зависимости от разности фаз (j2-j1):

1) j2-j1=±2mp (m = 0, 1, 2,...), тог­да A=A1+A2, т.е. амплитуда результирующего колебания А равна сумме ампли­туд складываемых колебаний;

2) j2-j1= ±(2m+1)p (m=0, 1, 2,...), тогда A = │A1-A2│, т.е. амплиту­да результирующего колебания равна разности амплитуд складываемых коле­баний.

 

23.Биения (Продолжение 22)

Для практики особый интерес пред­ставляет случай, когда два складываемых гармонических колебания одинакового на­правления мало отличаются по частоте. В результате сложения этих колебаний получаются колебания с периодически из­меняющейся амплитудой. Периодические изменения амплитуды колебания, возника­ющие при сложении двух гармонических колебаний с близкими частотами, называ­ются биениями.

Пусть амплитуды складываемых коле­баний равны А, а частоты равны w и w+Dw, причем Dw<<w. Начало отсчета выберем так, чтобы начальные фазы обоих колеба­ний были равны нулю:

Складывая эти выражения и учитывая, что во втором сомножителе Dw/2<<w, найдем

Получившееся выражение есть произведе­ние двух колебаний. Так как Dw<<w, то сомножитель, стоящий в скобках, почти не изменяется, когда сомножитель coswt со­вершит несколько полных колебаний. По­этому результирующее колебание х мож­но рассматривать как гармоническое

 

с частотой w, амплитуда Аб, которого изме­няется по следующему периодическому за­кону:

Частота изменения Aб, в два раза боль­ше частоты изменения косинуса (так как берется по модулю), т.е. частота биений равна разности частот складываемых ко­лебаний: wб=Dw. Период биений

Tб=2p/Dw.

Характер зависимости (144.3) показан на рис. 204, где сплошные жирные линии да­ют график результирующего колебания (144.3), а огибающие их — график мед­ленно меняющейся по уравнению (144.4) амплитуды.

Определение частоты тона (звука оп­ределенной высоты (см. §158)) биений между эталонным и измеряемым колеба­ниями — наиболее широко применяемый на практике метод сравнения измеряемой величины с эталонной. Метод биений ис­пользуется для настройки музыкальных инструментов, анализа слуха и т. д.

Любые сложные периодические коле­бания s=f(t) можно представить в виде суперпозиции одновременно совершаю­щихся гармонических колебаний с различ­ными амплитудами, начальными фазами, а также частотами, кратными циклической частоте w0:

Представление периодической функции в виде (144.5) связывают с понятием гар­монического анализа сложного периодиче­ского колебания,или разложения Фурье.

Члены ряда Фурье, определяющие гармо­нические колебания с частотами w0, 2w0, 3w0,..., называются первой(или основной),

второй, третьей и т. д. гармоникамислож­ного периодического колебания.

 

 



3
  • 14
  • 15
  • 16
  • Далее ⇒