Первое начало термодинамики. Рассмотрим термодинамическую систему, для которой механическая энергия не из­меняется, а изменяется лишь ее внутрен­няя энергия

Рассмотрим термодинамическую систему, для которой механическая энергия не из­меняется, а изменяется лишь ее внутрен­няя энергия. Внутренняя энергия системы может изменяться в результате различных процессов, например совершения над системой работы и сообщения ей теплоты. Так, вдвигая поршень в цилиндр, в кото­ром находится газ, мы сжимаем этот газ, в результате чего его температура повы­шается, т. е. тем самым изменяется (уве­личивается) внутренняя энергия газа. С другой стороны, температуру газа и его внутреннюю энергию можно повысить за счет сообщения ему некоторого количест­ва теплоты — энергии, переданной систе­ме внешними телами путем теплообмена (процесс обмена внутренними энергиями при контакте тел с разными температу­рами) .

Таким образом, можно говорить о двух формах передачи энергии от одних тел к другим: работе и теплоте. Энергия меха­нического движения может превращаться в энергию теплового движения и наоборот. При этих превращениях соблюдается за­кон сохранения и превращения энергии; применительно к термодинамическим про­цессам этим законом и является первое начало термодинамики, установленное в результате обобщения многовековых опытных данных.

Допустим, что некоторая система (газ, заключенный в цилиндр под поршнем), обладая внутренней энергией U1, получи­ла некоторое количество теплоты Q и, перейдя в новое состояние, характеризую­щееся внутренней энергией U2, совершила работу А над внешней средой, т. е. против внешних сил. Количество теплоты считает­ся положительным, когда оно подводится к системе, а работа — положительной, когда система совершает ее против внеш­них сил. Опыт показывает, что в соответ­ствии с законом сохранения энергии при любом способе перехода системы из перво­го состояния во второе изменение внутрен­ней энергии DU=U2-U1будет одинако­вым и равным разности между количест­вом теплоты Q, полученным системой, и работой А, совершенной системой про­тив внешних сил:

DU=Q-A,

или

Q=DU+A. (51.1)

Уравнение (51.1) выражает первое начало термодинамики:теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил.

Выражение (51.1) в дифференциаль­ной форме будет иметь вид

dQ=dU+dA, или в более корректной форме

dQ=dU+dA, (51.2)

где dU — бесконечно малое изменение внутренней энергии системы, dА — эле­ментарная работа, dQ — бесконечно малое количество теплоты. В этом выраже­нии dU является полным дифференциа­лом, а dA и dQ таковыми не являются. В дальнейшем будем использовать запись первого начала термодинамики в форме (51.2).

Из формулы (51.1) следует, что в СИ количество теплоты выражается в тех же единицах, что работа и энергия, т. е. в джоулях (Дж).

Если система периодически возвраща­ется в первоначальное состояние, то изме­нение ее внутренней энергии DU=0. Тогда, согласно первому началу термодинамики,

A=Q,

Т. е. вечный двигатель первого рода —

периодически действующий двигатель, ко­торый совершал бы большую работу, чем сообщенная ему извне энергия,— невоз­можен (одна из формулировок первого начала термодинамики).

 

 

Теплоемкость

Удельная теплоемкость веществаве­личина, равная количеству теплоты, не­обходимому для нагревания 1 кг вещест­ва на 1 К:

Единица удельной теплоемкости — джоуль на килограмм-кельвин (Дж/(кг•К)).

Молярная теплоемкость—величина, равная количеству теплоты, необходимому для нагревания 1 моля вещества на 1 К:

где v = m/M — количество вещества, вы­ражающее число молей.

Единица молярной теплоемкости — джоуль на моль-кельвин (Дж/(моль•К)).

Удельная теплоемкость с связана с мо­лярной Сm соотношением

Ст = сМ, (53.2)

где М — молярная масса вещества.

Различают теплоемкости при постоян­ном объеме и постоянном давлении, если в процессе нагревания вещества его объем или давление поддерживается по­стоянным.

Запишем выражение первого начала термодинамики (51.2) для 1 моля газа с учетом формул (52.1) и (53.1):

CmdT = dUm + pdVm. (53.3)

Если газ нагревается при постоянном объеме, то работа внешних сил равна ну­лю (см. (52.1)) и сообщаемая газу извне теплота идет только на увеличение его внутренней энергии:

т. е. молярная теплоемкость газа при по­стоянном объеме Сv равна изменению внутренней энергии 1 моля газа при повы­шении его температуры на 1 К. Согласно формуле (50.1),

тогда

Cv = iR/2. (53.5)

Если газ нагревается при постоянном давлении, то выражение (53.3) можно за­писать в виде

Учитывая, что dUm/dT не зависит от вида процесса (внутренняя энергия идеального газа не зависит ни от р, ни от V, а опреде­ляется лишь температурой Т) и всегда равна Сv (см. (53.4)); продифферен­цировав уравнение Клапейрона — Мен­делеева pVm=RT (42.4) по T(p=const), получим

Cp = Cv + R. (53.6)

Выражение (53.6) называется уравнением Майера;оно показывает, что Ср всегда больше Сv на величину молярной газовой постоянной. Это объясняется тем, что при нагревании газа при постоянном давлении требуется еще дополнительное количество теплоты на совершение работы расшире­ния газа, так как постоянство давле­ния обеспечивается увеличением объема газа.

Использовав (53.5), выражение (53.6) можно записать в виде

При рассмотрении термодинамических процессов важно знать характерное для каждого газа отношение Ср к Cv:

g=Cp/Cv=(i+2)/i. (53.8)

 

 

38. Теплоёмкость одноатомных и много атомных молекул

Из формул (53.5) и (53.7) следует, что молярные теплоемкости определяются лишь числом степеней свободы и не за­висят от температуры. Это утверждение молекулярно-кинетической теории спра­ведливо в довольно широком интервале температур лишь для одноатомных газов. Уже у двухатомных газов число степеней свободы, проявляющееся в теплоемкости, зависит от температуры. Молекула двух­атомного газа обладает тремя поступательными, двумя вращательными и одной колебательной степенями свободы.

 

По закону равномерного распределе­ния энергии по степеням свободы (см. § 50), для комнатных температур Cv = 7/2R. Из качественной эксперименталь­ной зависимости молярной теплоемкости Сv водорода (рис. 80) следует, что Cv за­висит от температуры: при низкой темпера­туре (»50 К) Cv=3/2R, при комнатной — Cv=5/2R (вместо расчетных 7/2R!) и очень высокой — Сv=7/2/R. Это можно объяснить, предположив, что при низких температурах наблюдается только посту­пательное движение молекул, при ком­натных — добавляется их вращение, а при высоких — к этим двум видам дви­жения добавляются еще колебания моле­кул.

Расхождение теории и эксперимента нетрудно объяснить. Дело в том, что при вычислении теплоемкости надо учитывать квантование энергии вращения и колеба­ний молекул (возможны не любые враща­тельные и колебательные энергии, а лишь определенный дискретный ряд значений энергий). Если энергия теплового движе­ния недостаточна, например, для возбуж­дения колебаний, то эти колебания не вно­сят своего вклада в теплоемкость (соот­ветствующая степень свободы «заморажи­вается» — к ней неприменим закон равно­распределения энергии). Этим объясняет­ся, что теплоемкость моля двухатомного газа — водорода — при комнатной темпе­ратуре равна 5/2 R вместо 7/2 R. Аналогич­но можно объяснить уменьшение тепло­емкости при низкой температуре («замо­раживаются» вращательные степени свободы) и увеличение при высокой («воз­буждаются» колебательные степени сво­боды).

 

39. Изохорный процесс(V = const).

Диаг­рамма этого процесса (изохора)в коорди­натах р, V изображается прямой, парал­лельной оси ординат (рис. 81), где процесс 12 есть изохорное нагревание, а 13 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е.

dA=pdV = 0.

Как уже указывалось в § 53, из первого начала термодинамики (dQ=dU+dA) для изохорного процесса следует, что вся теп­лота, сообщаемая газу, идет на увеличе­ние его внутренней энергии:

dQ =dU

Согласно формуле (53.4), dUm = CvdT.

Тогда для произвольной массы газа по­лучим

 

Изобарный процесс(р=const). Диаграмма этого процесса (изобара)в координатах р, V изображается прямой, парал­лельной оси V

 

 

. При изобарном процессе работа газа (см. (52.2)) при расширении объема от V1до V2 равна

и определяется площадью прямоугольни­ка, выполненного в цвете на рис. 82. Если использовать уравнение (42.5) Клапейро­на — Менделеева для выбранных нами двух состояний, то

откуда

Тогда выражение (54.2) для работы изо­барного расширения примет вид

Из этого выражения вытекает физический смысл молярной газовой постоянной R: если T2-T1=1К, то для 1 моля газа R=А, т. е. R численно равна работе изо­барного расширения 1 моля идеального газа при нагревании его на 1 К.

В изобарном процессе при сообщении газу массой от количества теплоты

его внутренняя энергия возрастает на ве­личину (согласно формуле (53.4))

При этом газ совершит работу, определяе­мую выражением (54.3).

 

 

Изотермический процесс

Изотермический процесс(T=const). Как уже указывалось в § 41, изотермиче­ский процесс описывается законом Бой­ля — Мариотта:

pV=const.

Диаграмма этого процесса (изотерма)в координатах р, V представляет собой гиперболу (см. рис.60), расположенную на диаграмме тем выше, чем выше темпе­ратура, при которой происходил процесс. Исходя из выражений (52.2) и (42.5) найдем работу изотермического расшире­ния газа:

Так как при T=const внутренняя энергия идеального газа не изменяется:

то из первого начала термодинамики (dQ =dU+dA) следует, что для изотермиче­ского процесса

dQ=dA,

т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им рабо­ты против внешних сил:

Следовательно, для того чтобы при рабо­те расширения температура не уменьша­лась, к газу в течение изотермического процесса необходимо подводить количест­во теплоты, эквивалентное внешней работе расширения.

 

 

Адиабатический процесс.

Адиабатическимназывается процесс, при котором отсутствует теплообмен (dQ=0) между системой и окружающей средой. К адиабатическим процессам можно от-

нести все быстропротекающие процессы. Например, адиабатическим процессом можно считать процесс распространения звука в среде, так как скорость распро­странения звуковой волны настолько вели­ка, что обмен энергией между волной и средой произойти не успевает. Адиаба­тические процессы применяются в двига­телях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д.

Из первого начала термодинамики (dQ=dU+dA) для адиабатического про­цесса следует, что

dA=-dU, (55.1)

т. е. внешняя работа совершается за счет изменения внутренней энергии системы.

Используя выражения (52.1) и (53.4), для произвольной массы газа перепишем уравнение (55.1) в виде

Продифференцировав уравнение состоя­ния для идеального газа pV=(m/M)RT, получим

Исключим из (55.2) и (55.3) температу­ру Т:

Разделив переменные и учитывая, что Срv =g (см. (53.8)), найдем

dp/p=-gdV/V.

Интегрируя это уравнение в пределах от р1до р2и соответственно от V1до V2, а затем потенцируя, придем к выражению

p2/pl=(V1/V2)g.

или

p1vg1 = p2vg2.

Так как состояния 1 и 2 выбраны про­извольно, то можно записать

рVg=const. (55.4)

Полученное выражение есть уравнение адиабатического процесса,называемое также уравнением Пуассона.

Для перехода к переменным Т, V или р, Т исключим из (55.4) с помощью урав­нения Клапейрона — Менделеева

соответственно давление или объем:

Выражения (55.4) — (55.6) представ­ляют собой уравнения адиабатического процесса. В этих уравнениях безразмер­ная величина (см. (53.8) и (53.2))

называется показателем адиабаты(или коэффициентом Пуассона).Для одно­атомных газов (Ne, He и др.), достаточно хорошо удовлетворяющих условию иде­альности, i = 3, g=1,67. Для двухатомных газов (Н2, N2, O2 и др.) i= 5, g=1,4. Зна­чения g, вычисленные по формуле (55.7), хорошо подтверждаются экспериментом.

Диаграмма адиабатического процесса (адиабата)в координатах р, V изобража­ется гиперболой (рис.83). На рисунке видно, что адиабата (pVg=const) более крута, чем изотерма (pV=const). Это объясняется тем, что при адиабатическом сжатии 13 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры.

 

 

Вычислим работу, совершаемую газом в адиабатическом процессе. Запишем уравнение (55.2) в виде

Если газ адиабатически расширяется от объема V1до V2, то его температура уменьшается от T1до T2и работа расши­рения идеального газа

Применяя те же приемы, что и при выводе формулы (55.5), выражение (55.8) для работы при адиабатическом расшире­нии можно преобразовать к виду

Работа, совершаемая газом при адиа­батическом расширении 12 (определяется площадью, выполненной в цвете на рис. 83), меньше, чем при изотермическом. Это объясняется тем, что при адиабатическом расширении происходит охлаждение газа, тогда как при изотермическом — темпера­тура поддерживается постоянной за счет притока извне эквивалентного количества теплоты.