Круговой процесс (цикл). Обратимые и необратимые процессы

Круговым процессом(или циклом)назы­вается процесс, при котором система, пройдя через ряд состояний, возвращает­ся в исходное. На диаграмме процессов цикл изображается замкнутой кривой (рис.84). Цикл, совершаемый идеальным газом, можно разбить на процессы расши­рения (12) и сжатия (21) газа. Рабо­та расширения (определяется площадью фигуры 1a2V2V11) положительна (dV>0), работа сжатия (определяется площадью фигуры 2b1V1V22) отрицательна (dV<0), Следовательно, работа, совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой. Если за циклсовершается положительная ра­бота (цикл протекает по часовой стрелке), то он называется пря­мым(рис. 84, а), если за цикл совершает­ся отрицательная работа (цикл протекает против часовой стрел­ки), то он называется обратным(рис. 84,б).

Прямой цикл используется в тепловых двигателях — периодически действующих двигателях, совершающих работу за счет полученной извне теплоты. Обратный цикл

используется в холодильных машинах — периодически действующих установках, в которых за счет работы внешних сил теплота переносится к телу с более высо­кой температурой.

В результате кругового процесса система возвращается в исходное состоя­ние и, следовательно, полное изменение внутренней энергии газа равно нулю. По­этому первое начало термодинамики (51.1) для кругового процесса

Q=DU+A=A, (56.1)

т. е. работа, совершаемая за цикл, равна количеству полученной извне теплоты. Од­нако в результате кругового процесса система может теплоту как получать, так и отдавать, поэтому

Q=Q1-Q2,

где Q1— количество теплоты, полученное системой, q2— количество теплоты, от­данное системой. Поэтому термический коэффициент полезного действия для кру­гового процесса

Термодинамический процесс называет­ся обратимым,если он может происходить как в прямом, так и в обратном направле­нии, причем если такой процесс происхо­дит сначала в прямом, а затем в обратном направлении и система возвращается в ис­ходное состояние, то в окружающей среде и в этой системе не происходит никаких изменений. Всякий процесс, не удовлетво­ряющий этим условиям, является необра­тимым.

Любой равновесный процесс является обратимым. Обратимость равновесного процесса, происходящего в системе, следу­ет из того, что ее любое промежуточное состояние есть состояние термодинамиче­ского равновесия; для него «безразлично», идет процесс в прямом или обратном на­правлении. Реальные процессы сопровож­даются диссипацией энергии (из-за тре­ния, теплопроводности и т.д.), которая нами не обсуждается. Обратимые процес­сы — это идеализация реальных процес­сов. Их рассмотрение важно по двум причинам: 1) многие процессы в природе и технике практически обратимы; 2) обра­тимые процессы являются наиболее эконо­мичными; имеют максимальный термиче­ский коэффициент полезного действия, что позволяет указать пути повышения к. п. д. реальных тепловых двигателей.