Моменты инерции однородных тел

Однородный стержень

Имеем однородный стержень длиной и массой . Направим по стержню ось . Вычислим момент инерции стержня относительно оси , проходящей перпендикулярно стержню через его конец:

. (146)

Момент инерции стержня относительно оси , проходящей через центр масс и параллельной оси , определяется по теореме Штейнера:

. (147)

Прямоугольная пластина

Прямоугольная тонкая пластина имеет размеры и и массу . Выберем точку на середине стороны длиной . Оси и расположим в плоскости пластины, параллельно сторонам длиной и соответственно, а ось направим перпендикулярно плоскости.

Моменты инерции пластины относительно осей координат равны:

, , . (148)

Сплошной диск

Имеем тонкий однородный диск радиусом и массой . Оси координат и расположены в плоскости диска. Момент его инерции относительно центра диска совпадает с моментом инерции относительно координатной оси , перпендикулярной плоскости диска.

, . (149)

Тонкое кольцо (круглое колесо)

Имеем тонкое кольцо радиусом и массой , распределенной по его ободу. Оси координат и расположим в плоскости кольца. Момент инерции относительно его центра совпадает с моментом инерции относительно координатной оси , перпендикулярной плоскости кольца.

, . (150)

Круглый цилиндр

Для круглого однородного цилиндра, масса которого , радиус и длина , его моменты инерции относительно продольной оси симметрии и относительно его поперечной оси симметрии равны:

, . (151)

Шар

Пусть масса шара , радиус . Моменты инерции шара относительно осей координат и центра шара равны:

. (152)

Теоремы динамики

Внешними силами механической системы называются силы, с которыми действуют на точки системы тела и точки, не входящие в рассматриваемую систему.

Внутренними силами механической системы называют силы взаимодействия между точками рассматриваемой системы.

Внешнюю силу, приложенную к какой-либо точке системы, обозначим , а внутреннюю – . Внутренние и внешние силы могут включать в себя как активные силы, так и силы реакций связей.

Главный вектор всех внутренних сил системы и главный момент этих сил относительно произвольной точки равны нулю при любом состоянии системы, т. е. при ее равновесии и при произвольном движении.

, . (153)

Если рассмотреть какие-либо две произвольные точки системы, например и , то для них , так как силы действия и противодействия всегда равны друг другу по модулю, противоположны по направлению и действуют вдоль одной прямой линии, соединяющей взаимодействующие точки. Главный вектор внутренних сил состоит из векторной суммы таких сил действия и противодействия, так как вся система состоит из пар взаимодействующих точек. Следовательно, он равен нулю. Так как обе силы имеют одинаковые плечи и противоположные направления векторных моментов, их главный вектор равен нулю. Главный момент внутренних сил состоит из векторной суммы таких выражений, равных нулю.

Пусть даны внешние и внутренние силы, действующие на систему, состоящую из точек. Если к каждой точке системы приложить равнодействующую силу внешних сил и равнодействующую силу всех внутренних сил то для любой -й точки системы можно составить дифференциальное уравнение движения, например, в векторной форме, т. е.

, ( ). (154)

Систему дифференциальных уравнений (154) называют дифференциальными уравнениями движения механической системы в векторной форме. Если спроецировать векторные дифференциальные уравнения (154) на прямоугольные декартовы оси координат, то получим систему дифференциальных уравнений, описывающих движение точек механической системы.