Неоднозначность действия фактора на разные функции. 3 страница

 

В середине XIX в. было убедительно установлено, что устойчивость сухих коловраток, тихоходок и нематод к высоким и низким температурам, недостатку или отсутствию кислорода возрастает пропорционально степени их обезвоживания. Однако оставался открытым вопрос, происходит ли при этом полное прерывание жизни или лишь ее глубокое угнетение. В 1878 г. Клод Бернал выдвинул понятие «скрытая жизнь», которую он характеризовал прекращением обмена веществ и «перерывом отношений между существом и средой».

Окончательно этот вопрос был решен лишь в первой трети XX столетия с развитием техники глубокого вакуумного обезвоживания. Опыты Г. Рама, П. Беккереля и других ученых показали возможность полной обратимой остановки жизни. В сухом состоянии, когда в клетках оставалось не более 2 % воды в химически связанном виде, такие организмы, как коловратки, тихоходки, мелкие нематоды, семена и споры растений, споры бактерий и грибов выдерживали пребывание в жидком кислороде (-218,4 °C), жидком водороде (-259,4 °C), жидком гелии (-269,0 °C), т. е. температуры, близкие к абсолютному нулю. При этом содержимое клеток затвердевает, отсутствует даже тепловое движение молекул, и всякий обмен веществ, естественно, прекращен. После помещения в нормальные условия эти организмы продолжают развитие. У некоторых видов остановка обмена веществ при сверхнизких температурах возможна и без высушивания, при условии замерзания воды не в кристаллическом, а в аморфном состоянии.

Полная временная остановка жизни получила название анабиоза. Термин был предложен В. Прейером еще в 1891 г. В состоянии анабиоза организмы становятся устойчивыми к самым разнообразным воздействиям. Например, тихоходки выдерживали в эксперименте ионизирующее облучение до 570 тыс. рентген в течение 24 ч. Обезвоженные личинки одного из африканских комаров-хирономусов – Polypodium vanderplanki – сохраняют способность оживать после воздействия температуры в +102 °C.

Состояние анабиоза намного расширяет границы сохранения жизни, в том числе и во времени. Например, в толще ледника Антарктиды при глубоком бурении были обнаружены микроорганизмы (споры бактерий, грибов и дрожжей), развившиеся впоследствии на обычных питательных средах. Возраст соответствующих горизонтов льда достигает 10–13 тыс. лет. Споры некоторых жизнеспособных бактерий выделены и из более глубоких слоев возрастом в сотни тысяч лет.

Анабиоз, однако, – достаточно редкое явление. Он возможен далеко не для всех видов и является крайним состоянием покоя в живой природе. Его необходимое условие – сохранение неповрежденными тонких внутриклеточных структур (органелл и мембран) при высушивании или глубоком охлаждении организмов. Это условие невыполнимо для большинства видов, имеющих сложную организацию клеток, тканей и органов.

Способность к анабиозу обнаруживается у видов, имеющих простое или упрощенное строение и обитающих в условиях резкого колебания влажности (пересыхающие мелкие водоемы, верхние слои почвы, подушки мхов и лишайников и т. п.).

Гораздо шире распространены в природе другие формы покоя, связанные с состоянием пониженной жизнедеятельности в результате частичного угнетения метаболизма. Любая степень снижения уровня обмена веществ повышает устойчивость организмов и позволяет более экономно тратить энергию.

Формы покоя в состоянии пониженной жизнедеятельности делят на гипобиоз и криптобиоз, или покой вынужденный и покой физиологический. При гипобиозе торможение активности, или оцепенение, возникает под прямым давлением неблагоприятных условий и прекращается почти сразу после того, как эти условия возвращаются к норме (рис. 9). Подобное подавление процессов жизнедеятельности может возникать при недостатке тепла, воды, кислорода, при повышении осмотического давления и т. п. В соответствии с ведущим внешним фактором вынужденного покоя различают криобиоз (при низких температурах), ангидробиоз (при недостатке воды), аноксибиоз (в анаэробных условиях), гиперосмобиоз (при высоком содержании солей в воде) и др.

He только в арктических и антарктических, но и в средних широтах некоторые морозостойкие виды членистоногих (коллемболы, ряд мух, жужелицы и др.) зимуют в состоянии оцепенения, быстро оттаивая и переходя к активности под лучами солнца, а затем вновь теряют подвижность при снижении температуры. Взошедшие весной растения прекращают и возобновляют рост и развитие вслед за похолоданием и потеплением. После выпавшего дождя голый грунт часто зеленеет за счет быстрого размножения почвенных водорослей, находившихся в вынужденном покое.

Рис. 9. Пагон – кусок льда со вмерзшими в него пресноводными обитателями (из С. А. Зернова, 1949)

 

Глубина и продолжительность подавления обмена веществ при гипобиозе зависит от длительности и интенсивности действия угнетающего фактора. Вынужденный покой наступает на любой стадии онтогенеза. Выгоды гипобиоза – быстрое восстановление активной жизнедеятельности. Однако это относительно неустойчивое состояние организмов и при большой длительности может быть повреждающим из-за разбалансированности метаболических процессов, истощения энергетических ресурсов, накопления недоокисленных продуктов обмена и других неблагоприятных физиологических изменений.

Криптобиоз – принципиально другой тип покоя. Он связан с комплексом эндогенных физиологических перестроек, которые происходят заблаговременно, до наступления неблагоприятных сезонных изменений, и организмы оказываются к ним готовы. Криптобиоз является адаптацией прежде всего к сезонной или иной периодичности абиотических факторов внешней среды, их регулярной цикличности. Он составляет часть жизненного цикла организмов, возникает не на любой, а на определенной стадии индивидуального развития, приуроченной к переживанию критических периодов года.

Переход в состояние физиологического покоя требует времени. Ему предшествует накопление резервных веществ, частичная дегидратация тканей и органов, уменьшение интенсивности окислительных процессов и ряд других изменений, понижающих в целом тканевый метаболизм. В состоянии криптобиоза организмы становятся во много раз более устойчивыми к неблагоприятным воздействиям внешней среды (рис. 10). Основные биохимические перестройки при этом являются во многом общими для растений, животных и микроорганизмов (например, переключение метаболизма в разной степени на путь гликолиза за счет резервных углеводов и т. п.). Выход из криптобиоза также требует времени и затрат энергии и не может быть осуществлен простым прекращением отрицательного действия фактора. Для этого необходимы особые условия, различные для разных видов (например, промораживание, присутствие капельно-жидкой воды, определенная продолжительность светового дня, определенное качество света, обязательные колебания температуры и др.).

Криптобиоз как стратегия выживания в периодически неблагоприятных для активной жизни условиях – это продукт длительной эволюции и естественного отбора. Он широко распространен в живой природе. Состояние криптобиоза характерно, например, для семян растений, цист и спор различных микроорганизмов, грибов, водорослей. Диапауза членистоногих, спячка млекопитающих, глубокий покой растений – также различные типы криптобиоза.

Рис. 10. Дождевой червь в состоянии диапаузы (по В. Тишлеру, 1971)

 

Состояния гипобиоза, криптобиоза и анабиоза обеспечивают выживание видов в природных условиях разных широт, часто экстремальных, позволяют сохранять организмы в течение длительных неблагоприятных периодов, расселяться в пространстве и во многом раздвигают границы возможности и распространения жизни в целом.

Глава 3. ВАЖНЕЙШИЕ АБИОТИЧЕСКИЕ ФАКТОРЫ И АДАПТАЦИИ К НИМ ОРГАНИЗМОВ

3.1. Температура

Температура отражает среднюю кинетическую скорость атомов и молекул в какой-либо системе. От температуры зависит и скорость в организме биохимических реакций, составляющих обмен веществ. Повышение температуры увеличивает количество молекул, обладающих энергией активации. Коэффициент, показывающий, во сколько раз изменяется скорость реакций при изменении температуры на 10 °C, обозначают Q10. Для большинства химических реакций величина этого коэффициента равна 2–3 (закон Вант-Гоффа). Изменения температуры приводят также к изменениям стереохимической специфичности макромолекул: третичной и четвертичной структуры белков, строения нуклеиновых кислот, организации мембран и других структур клетки. Так как величина Q10 для разных биохимических реакций различна, то изменения температуры могут сильно нарушить сбалансированность обмена веществ, если скорости сопряженных процессов изменятся различным образом. Сильное понижение температуры вызывает опасность такого замедления обмена веществ, при котором окажется невозможным осуществление основных жизненных функций организма. Критическим моментом является замерзание воды в клетках, так как появление кристалликов льда несовместимо с сохранением целостности внутриклеточных структур. Повышение температуры ведет к денатурации белков, в среднем в области около 60 °C, но рассогласование биохимических и физиологических процессов начинается раньше, уже при некотором превышении 42–43 °C. Излишнее усиление метаболизма при высоких температурах тела также может вывести организм из строя еще задолго до теплового разрушения ферментов, так как резко возрастают потребности в питательных веществах и кислороде, которые далеко не всегда могут быть удовлетворены. Таким образом, жизнь организмов в среде с низкими, высокими и колеблющимися температурами представляет сложную задачу адаптации, решаемую в ходе эволюции и индивидуального развития.

В процессе эволюции у живых организмов выработались разнообразные приспособления, позволяющие регулировать обмен веществ при изменениях температуры окружающей среды. Это достигается двумя путями: 1) различными биохимическими и физиологическими перестройками (изменение набора, концентрации и активности ферментов, обезвоживание, понижение точки замерзания растворов тела и т. д.); 2) поддержанием температуры тела на более стабильном уровне, чем температура окружающей среды, что позволяет не слишком нарушать сложившийся ход биохимических реакций.

3.1.1. Температурные границы существования видов

В среднем активная жизнедеятельность организмов требует довольно узкого диапазона температур, ограниченного критическими порогами замерзания воды и тепловой денатурации белков, примерно в пределах от 0 до +50 °C.Границы оптимальных температур соответственно должны быть еще более узкими. Однако реально эти границы преодолеваются в природе у многих видов за счет специфических адаптаций. Существуют экологические группы организмов, оптимум которых сдвинут в сторону низких или высоких температур.

Криофилы – виды, предпочитающие холод и специализированные к жизни в этих условиях. Свыше 80 % земной биосферы относится к постоянно холодным областям с температурой ниже +5 °C – это глубины Мирового океана, арктические и антарктические пустыни, тундры, высокогорья. Обитающие здесь виды обладают повышенной холодостойкостью. Основные механизмы этих адаптаций биохимические. Ферменты холодолюбивых организмов обладают такими особенностями строения, которые позволяют им эффективно понижать энергию активации молекул и поддерживать клеточный метаболизм при температурах, близких к 0 °C. Большую роль играют также механизмы, предотвращающие образование льда внутри клеток. При этом реализуются два основных пути – противостояние замерзанию (резистентность) и устойчивость к замерзанию (толерантность).

Биохимический путь противостояния замерзанию – накопление в клетках макромолекулярных веществ – антифризов, которые понижают точку замерзания жидкостей тела и препятствуют образованию кристаллов льда в организме. Такого типа холодовые адаптации обнаружены, например, у антарктических рыб семейства нототениевых, которые живут при температуре тела -1,86 °C, плавая под поверхностью сплошного льда в воде с такою же температурой (рис. 11). Мелкая тресковая рыба сайка в Северном Ледовитом океане плавает в водах с температурой не выше +5 °C, а нерестится зимой в переохлажденных водах у побережья. Глубоководные рыбы в приполярных районах все время находятся в переохлажденном состоянии.

Предельная температура, при которой еще возможна активность клеток, зафиксирована у микроорганизмов. В холодильных камерах мясные продукты могут быть испорчены за счет деятельности бактерий при температурах до -10-12 °C. Ниже этих температур роста и развития одноклеточных организмов не происходит.


Рис. 11. Антарктическая рыба трематом-пестряк с температурой тела -1,98 °C (см.: Жизнь животных. Т. 4. 1971)

 

Другой путь холодостойкости – выносливость к замерзанию – связан с временным прекращением активного состояния (гипобиозом или криптобиозом). Образование кристалликов льда внутри клеток необратимо нарушает их ультраструктуру и приводит к гибели. Но многие криофилы способны переносить образование льда во внеклеточных жидкостях. Этот процесс приводит к частичной дегидратации клеток, что повышает их устойчивость. У насекомых накопление защитных органических веществ, таких как глицерин, сорбит, маннит и других, препятствует кристаллизации внутриклеточных растворов и позволяет переживать критические морозные периоды в состоянии оцепенения. Так, жуки-жужелицы в тундрах выдерживают переохлаждение до -35 °C, накапливая к зиме до 25 % глицерина и снижая содержание воды в теле с 65 до 54 %. Летом глицерин в их теле не обнаруживается. Некоторые насекомые выдерживают зимой до -47 и даже -50 °C с замерзанием внеклеточной, но не внутриклеточной влаги. Морские обитатели практически не сталкиваются с температурами ниже -2 °C, но беспозвоночные приливно-отливной зоны (моллюски, усоногие раки и др.) зимой во время отлива переносят замерзание до – (15–20) °С. Клетки под микроскопом выглядят сморщенными, но кристаллов льда в них не обнаруживается. Устойчивость к замерзанию может проявляться и у эвритермных видов, оптимальные температуры развития которых далеки от 0 °C.

Термофилы – это экологическая группа видов, оптимум жизнедеятельности которых приурочен к области высоких температур. Термофилией отличаются многие представители микроорганизмов, растений и животных, встречающихся в горячих источниках, на поверхности прогреваемых почв, в разлагающихся органических остатках при их саморазогревании и т. п.

Верхние температурные пределы активной жизни отличаются у разных групп организмов. Наиболее устойчивы бактерии. У одного из видов архебактерий, распространенных на глубинах вокруг термальных источников («курильщиков»), экспериментально обнаружена способность к росту и делению клеток при температурах, превышающих +110 °C. Некоторые бактерии, окисляющие серу, как, например, Sulfolobus acidocaldarius, размножаются при +(85–90)°С. Обнаружена даже способность ряда видов расти в практически кипящей воде. Естественно, не все бактерии активны при столь высоких температурах, но разнообразие таких видов достаточно велико.

Верхние температурные пороги развития цианобактерий (сине-зеленых водорослей) и других фотосинтезирующих прокариот лежат в более низких пределах от +70 до +73 °C. Термофилы, растущие при +(60–75) °С, есть как среди аэробных, так и анаэробных бактерий, спорообразующих, молочнокислых, актиномицетов, метанообразующих и др. В неактивном состоянии спорообразующие бактерии выдерживают до +200 °C в течение десятков минут, что демонстрирует режим стерилизации предметов в автоклавах.

Термостабильность белков бактерий создается за счет значительного числа малых изменений в их первичной структуре и добавочных слабых связей, определяющих укладку молекул. В транспортных и рибосомных РНК термофилов повышено содержание гуанина и цитозина. Эта пара оснований более термостабильна, чем пара аденин – урацил.

Таким образом, выход температурной устойчивости за пределы средней нормы происходит в основном за счет биохимических адаптаций.

Среди эукариотных организмов – грибов, простейших, растений и животных – также существуют термофилы, но уровень их толерантности к высокой температуре ниже, чем у бактерий. Пределы роста грибного мицелия составляют +(60–62) °С. Известны десятки видов, способных быть активными при +50 °C и выше в таких местообитаниях, как компосты, стога сена, хранящееся зерно, прогреваемая почва, свалки и т. п. Простейшие – амебы и инфузории, одноклеточные водоросли могут размножаться до температуры в +(54–56) °С Высшие растения могут переносить краткосрочные нагревания до +(50–60) °С, но активный фотосинтез даже у пустынных видов тормозится температурами, превышающими +40 °C. Так, в клетках суданской травы при +48 °C движение цитоплазмы останавливается уже через 5 мин. Критические температуры тела некоторых животных, например пустынных ящериц, могут достигать +(48–49) °С, но для большинства видов температуры тела, превышающие +(43–44) °С, несовместимы с жизнью из-за рассогласования физиологических процессов и коагуляции белка коллагена. Таким образом, с усложнением организации живых существ способность их быть активными при высоких температурах понижается.

Узкая специализация и латентные состояния намного раздвигают границы жизни по отношению к отдельным факторам среды. Если средние температурные пределы активности организмов характеризуются диапазоном от 0 до +(40–45) °С, то специализированные виды (криофилы и термофилы) расширяют его более чем вдвое (от -10 до примерно +110 °C), а в состоянии криптобиоза и анабиоза некоторые формы жизни способны выдерживать температуры, близкие к абсолютному нулю или намного превышающие точку кипения виды.

3.1.2. Температура тела и тепловой баланс организмов

Температура тела живых существ по-разному зависит от температуры окружающей среды. Баланс тепла в организме складывается из его прихода и расхода. Источники поступления тепловой энергии делятся на внешние и внутренние. Внешнее, или экзогенное, тепло организм получает от более нагретых воды, воздуха, окружающих предметов, прямой солнечной радиации. При этом большую роль играют площадь покровов и их теплопроводность. Внутреннее, или эндогенное, тепло вырабатывается как обязательный атрибут обмена веществ. Любой организм выделяет в окружающую среду тепло в результате своей жизнедеятельности.

Источником теплообразования в клетках являются два экзотермических процесса: окислительные реакции и расщепление АТФ. Энергия, освобождающаяся при втором процессе, идет, как известно, на осуществление всех рабочих функций клетки, а энергия окисления – на восстановление АТФ. Но и в том, и в другом случае, согласно второму закону термодинамики, часть энергии рассеивается в виде тепла. Тепло, вырабатываемое живыми организмами как побочный продукт биохимических реакций, может служить существенным источником повышения температуры их тела. Общий объем теплопродукции зависит от массы тела и интенсивности метаболизма.

Потери тепла происходят через поверхность тела за счет излучения и теплопроводности, а также за счет энергоемкого испарения воды организмами. По физическим законам на испарение 1 мл воды затрачивается около 539 кал. Соотношение всех этих теплообменных процессов определяет температуру живых существ и влияет на скорость метаболических реакций.

Жизнедеятельность и активность большинства видов на Земле зависят прежде всего от тепла, поступающего извне, а температура тела – от хода внешних температур. Такие организмы называют пойкилотермными. Этот термин обозначает изменчивость теплового режима организмов. Пойкилотермность свойственна всем микроорганизмам, грибам, растениям, беспозвоночным животным и значительной части хордовых. Две группы высших животных – птиц и млекопитающих относят к гомойотермным. Они способны поддерживать постоянную оптимальную температуру тела независимо от температуры среды.

Среди пойкилотермных организмов есть такие, которые всю жизнь проводят в условиях постоянных внешних температур (глубины океанов, пещеры и т. п.), в связи с чем температура их тела не меняется. Такое явление называют ложной гомойотермией (рис. 12). Она свойственна, например, ряду рыб и иглокожих. Среди истинно гомойотермных животных выделяют группу гетеротермных. В нее входят виды, впадающие в спячку или временное оцепенение. Эти виды в активном состоянии поддерживают постоянную температуру тела на высоком уровне, а в неактивном – пониженную, что сопровождается замедлением обмена веществ. Таковы сурки, суслики, летучие мыши, сони, ежи, колибри, стрижи и др. Таким образом, термины «пойкилотермия», «гомойотермия», «ложная гомойотермия» и «гетеротермия» отражают степень изменчивости температуры живых существ.


Рис. 12.Ложногомойотермные членистоногие – обитатели пещер: 1– лжескорпион; 2 – многоножка; 3 – кузнечик; 4 – жужелица

 

Для характеристики организмов по основным источникам используемого тепла используют термины эктотермный и эндотермный. Эктотермия – это жизнь преимущественно за счет нагревания из внешней среды, эндотермия – за счет тепла, вырабатываемого самим организмом.

Масштабы выработки тепла сильно отличаются у разных видов, проявляя зависимость от сложности организации группы, возможностей окислительных реакций, размеров и массы тела, условий среды и других причин. Так, например, бактерии выделяют на грамм веса в час около 450 кал, мухи-дрозофилы – 30, мыши – 8, для человека этот показатель равен 4. В пределах позвоночных животных при сходной массе тела млекопитающие продуцируют в 5–6 раз, а птицы – в 7–8 раз больше тепла, чем рептилии.

Все живые организмы потенциально эндотермны, но сильно различаются по уровню обмена и возможностям сохранения тепла. Нарушения теплового баланса меняют температуру тела. Восстановить нарушенный баланс можно тремя путями: 1) изменением теплопродукции, 2) изменением теплоотдачи и 3) перемещением в пространстве в область предпочитаемых температур. Пойкилотермные и гомойотермные организмы по-разному реализуют возможности температурных адаптаций.

3.1.3. Температурные адаптации пойкилотермных организмов

Температура пойкилотермных изменяется вслед за температурой окружающей среды. Они преимущественно эктотермны, выработки и сохранения собственного тепла у них недостаточно для противостояния тепловому режиму местообитаний. В связи с этим реализуется два основных пути адаптации: специализация и толерантность.

Специализированные виды стенотермны, они приспособлены к жизни в таких участках биосферы, где колебания температур происходят лишь в узких пределах. Выход за эти пределы для них губителен. Например, некоторые одноклеточные водоросли, развивающиеся в горных ледниках на поверхности тающего льда, погибают при температурах, превышающих +(3–5) °С. Растения дождевых тропических лесов не способны переносить снижение температуры до +(5–8) °С. Коралловые полипы живут только в диапазоне температур воды от +20,5 до +30 °C, т. е. в тропическом поясе океана. Голотурия Elpidia glacialis обитает при температуре воды от 0 до +1 °C и не выдерживает отклонения от этого режима ни на один градус.

Другой путь адаптации пойкилотермных видов – развитие устойчивости клеток и тканей к широкому колебанию температур, характерному для большей части биосферы. Этот путь связан с периодическим торможением обмена веществ и перехода организмов в латентное состояние, когда температура среды сильно отклоняется от оптимума.

Эффективные температуры развития пойкилотермных организмов.Зависимость темпов роста и развития от внешних температур дает возможность рассчитать прохождение жизненного цикла видов в конкретных условиях. После холодового угнетения нормальный обмен веществ восстанавливается для каждого вида при определенной температуре, которая называется температурным порогом развития, или биологическим нулем развития. Чем больше температура среды превышает пороговую, тем интенсивнее протекает развитие и, следовательно, тем скорее завершается прохождение отдельных стадий и всего жизненного цикла организма (рис. 13).


Рис. 13. Состояние развивающихся при разных температурах головастиков через 3 дня после оплодотворения яйца (по С. А. Зернову, 1949)

 

Для осуществления генетической программы развития пой-килотермным организмам необходимо получить извне определенное количество тепла. Это тепло измеряется суммой эффективных температур. Под эффективной температурой понимают разницу между температурой среды и температурным порогом развития организмов. Для каждого вида она имеет верхние пределы, так как слишком высокие температуры уже не стимулируют, а тормозят развитие.

И порог развития, и сумма эффективных температур для каждого вида свои. Они зависят от исторической приспособленности к условиям жизни. Для семян растений умеренного климата, например гороха, клевера, порог развития низкий: их прорастание начинается при температуре почвы от 0 до +1 °C; более южные культуры – кукуруза и просо – начинают прорастать только при +(8-10) °С, а семенам финиковой пальмы для начала развития нужно прогревание почвы до +30 °C.

Сумму эффективных температур рассчитывают по формуле

X = (T – C) · t,

где X– сумма эффективных температур; T – температура окружающей среды, С – температура порога развития и t – число часов или дней с температурой, превышающей порог развития.

Зная средний ход температур в каком-либо районе, можно рассчитать появление определенной фазы или число возможных генераций интересующего нас вида. Так, в климатических условиях Северной Украины может выплодиться лишь одна генерация бабочки яблонной плодожорки, а на юге Украины – до трех, что необходимо учитывать при разработке мер защиты садов от вредителей. Сроки цветения растений зависят от того, за какой период они набирают сумму необходимых температур. Для зацветания мать-и-мачехи под Петербургом, например, сумма эффективных температур равна 77, кислицы – 453, земляники – 500, а желтой акации – 700 °C.

Сумма эффективных температур, которую нужно набрать для завершения жизненного цикла, часто ограничивает географическое распространение видов. Например, северная граница лесной растительности приблизительно совпадает с июльскими изотермами +(10–12) °С. Севернее тепла для развития деревьев уже не хватает, и зона лесов сменяется безлесными тундрами.

Расчеты эффективных температур необходимы в практике сельского и лесного хозяйства, при борьбе с вредителями, интродукции новых видов и т. п. Они дают первую, приближенную основу для составления прогнозов. Однако на распространение и развитие организмов влияет множество других факторов, поэтому в действительности температурные зависимости оказываются более сложными.

Температурная компенсация.Ряд пойкилотермных видов, обитающих в условиях переменных температур, развивает возможность поддерживать более или менее постоянный уровень обмена веществ в довольно широких пределах изменения температуры тела. Это явление называется температурной компенсацией и происходит в основном за счет биохимических адаптаций. Например, у моллюсков на побережье Баренцева моря, таких, как брюхоногие литторины (Littorina littorea) и двустворчатые мидии (Mytilus edulis), интенсивность обмена, оцениваемая по потреблению кислорода, почти не зависит от температуры в тех пределах, с которыми моллюски встречаются ежедневно во время приливов и отливов. В весенне-летний период этот диапазон достигает более 20 °C (от +6 до +30 °C), и в холодной воде их метаболизм столь же интенсивен, как в теплом воздухе. Это обеспечивается действием ферментов, которые при понижении температуры меняют свою конфигурацию таким образом, что возрастает их сродство к субстрату и реакции протекают более активно.

Другие способы температурной компенсации связаны с заменой действующих ферментов сходными по функции, но работающими при иной температуре (изоферментами). Такие адаптации требуют времени, поскольку происходит инактивация одних генов и включение других с последующими процессами сборки белков. Подобная акклимация (сдвиг температурного оптимума) лежит в основе сезонных перестроек, а также обнаруживается у представителей широко распространенных видов в разных по климату частях ареала. Например, у одного из видов бычков из Атлантического океана в низких широтах Q10 имеет невысокое значение, а в холодных северных водах возрастает при низких температурах и снижается при средних. Результатом этих компенсаций является то, что животные могут поддерживать относительное постоянство активности, так как даже незначительное повышение температуры у критических точек усиливает обменные процессы. Температурные компенсации для каждого вида возможны лишь в определенном диапазоне температур, но не выше и не ниже этой области.