Классификация и краткая характеристика радиационных аварий

Радиационная авария- событие, которое могло привести или привело к незапланированному облучению людей или к радиоактивному загрязнению окружающей среды с превышением величин, регламентированных норматив­ными документами для контролируемых условий, происшедшее в результате потери управления источником ионизирующего излучения, вызванное неис­правностью оборудования, неправильными действиями персонала, стихийными бедствиями или иными причинами.

Очаг аварии- территория разброса конструкционных материалов ава­рийных объектов и действия а-, в- и у-излучений.

Зона радиоактивного загрязнения- местность, на которой произошло

выпадение радиоактивных веществ.

Типы радиационных аварийопределяются используемыми в народном хозяй­стве источниками ионизирующего излучения, которые можно условно разделить на следующие группы: ядерные, радиоизотопные и создающие ионизирующее излуче­ние за счет ускорения (замедления) заряженных частиц в электромагнитном поле (электрофизические). Такое деление достаточно условно, поскольку, например, атом­ные электростанции (АЭС) одновременно являются и ядерными, и радиоизотопными объектами. К чисто радиоизотопным объектам можно отнести, например, пункты за­хоронения радиоактивных отходов или радиоизотопные технологические медицин­ские облучательные установки.

На ядерных энергетических установках в результате аварийного выброса воз­можны следующие факторы радиационного воздействия на население:

• внешнее облучение от радиоактивного облака и от радиоактивно загрязнен­ных поверхностей земли, зданий, сооружений и др.;

• внутреннее облучение при вдыхании находящихся в воздухе радиоактивных веществ и при потреблении загрязненных радионуклидами продуктов пита­ния и воды;

• контактное облучение за счет загрязнения радиоактивными веществами кож­ных покровов.

В зависимости от состава выброса может преобладать (то есть приводить к наи­большим дозовым нагрузкам) тот или иной из вышеперечисленных путей воздейст­вия. Радионуклидами, вносящими существенный вклад в облучение организма и его отдельных органов (щитовидной железы и легких) при авариях на ядерных энергетических установках, являются: I, Те, Хе, Сs, Sг, Кr, Ru, Се, Рu.

При аварии на радиохимическом производстве радионуклидный состав и вели­чина аварийного выброса (сброса) существенно зависят от технологического участка процесса и участка радиохимического производства. Основной вклад в формирование радиоактивного загрязнения местности в случае радиационной аварии на радио­химическом производстве могут вносить изотопы Sr, Cs, Pu, Am, Cm.

Аварии с радионуклидными источниками связаны с их использованием в про­мышленности, газо- и нефтедобыче, строительстве, исследовательских и медицин­ских учреждениях. Аварии с радиоактивными источниками могут происходить без их разгерметизации и с разгерметизацией. Характер радиационного воздействия оп­ределяется видом радиоактивного источника, пространственными и временными ус­ловиями облучения. При аварии с ампулированным источником переоблучению мо­жет подвергнуться ограниченное число лиц, имевших непосредственный контакт с радиоактивным источником, с преобладающей клиникой общего неравномерного об­лучения и местного (локального) радиационного поражения отдельных органов и тканей. Особенностью аварии с радиоактивным источником является сложность уста­новления факта аварии. К сожалению, часто подобная авария устанавливается после регистрации тяжелого радиационного поражения.

При аварии с ядерными боеприпасами в случае диспергирования делящегося материала (механическое разрушение, пожар) основным фактором радиационного воздействия являются изотопы 239Pu и 241Am с преобладанием внутреннего облучения за счет ингаляции. При пожаре возможен сценарий, когда основным поражающим фактором будет выделение оксида трития (молекулярного трития).

Возможность радиационной аварии на космических аппаратах обусловлена на­личием на их борту:

• радиоактивных изотопов в генераторах электрической и тепловой энергии, в различных контрольно-измерительных приборах и системах;

• ядерных бортовых электроэнергетических установок;

• ядерных установок в качестве двигательных систем.

Распространенными в перевозках и наиболее опасными являются гексафторид урана и соединения плутония. Соединения долгоживущего (более 2000 лет) плуто­ния (обычно диоксид плутония) представляют опасность из-за длительного а-излучения и высокой токсичности. Основным путем поступления аэрозоля диоксида плуто­ния является ингаляционный.

Классы радиационных аварийсвязаны, прежде всего, с их масштабами. По границам распространения радиоактивных веществ и по возможным последствиям радиационные аварии подразделяются на локальные, местные, общие.

Локальная авария- это авария с выходом радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, техно­логических систем, зданий и сооружений в количествах, превышающих регла­ментированные для нормальной эксплуатации значения, при котором возмож­но облучение персонала, находящегося в данном здании или сооружении, в до­зах, превышающих допустимые.

Местная авария- это авария с выходом радиоактивных продуктов в пре­делах санитарно-защитной зоны в количествах, превышающих регламентиро­ванные для нормальной эксплуатации значения, при котором возможно облу­чение персонала в дозах, превышающих допустимые.

Общая авария- это авария с выходом радиоактивных продуктов за гра­ницу санитарно-защитной зоны в количествах, превышающих регламентиро­ванные для нормальной эксплуатации значения, при котором возможно облу­чение населения и загрязнение окружающей среды выше установленных норм.

По техническим последствиям выделяются следующие виды радиационных аварий.

1. Проектная авария. Это предвиденные ситуации, то есть возможность воз­никновения такой аварии заложена в техническом проекте ядерной уста­новки. Она относительно легко устранима.

2. Запроектная авария - возможность такой аварии в техническом проекте не предусмотрена, однако она может произойти.

3. Гипотетическая ядерная авария - авария, последствия которой трудно предугадать.

4. Реальная авария - это состоявшаяся как проектная, так и запроектная ава­рия. Практика показала, что реальной может стать и гипотетическая авария (в частности, на Чернобыльской АЭС).

 

Аварии могут быть без разрушения и с разрушением ядерного реактора.

Отдельно следует указать на возможность возникновения аварии реактора с раз­витием цепной ядерной реакции - активного аварийного взрыва, сопровождающего­ся не только выбросом радиоактивных веществ, но и мгновенным гамма-нейтронным излучением, подобного взрыву атомной бомбы. Данный взрыв может возникнуть только при аварии реакторов на быстрых нейтронах.

При решении вопросов организации медицинской помощи населению в услови­ях крупномасштабной радиационной аварии необходим анализ путей и факторов ра­диационного воздействия в различные временные периоды развития аварийной си­туации, формирующих медико-санитарные последствия. С этой целью рассматрива­ют три временные фазы: раннюю, промежуточную и позднюю (восстановительную).

Ранняя фаза- это период от начала аварии до момента прекращения выброса радиоактивных веществ в атмосферу и окончания формирования радиоактивного следа на местности. Продолжительность этой фазы в зависимости от характера, мас­штаба аварии и метеоусловий может быть от нескольких часов до нескольких суток.

На ранней фазе доза внешнего облучения формируется гамма- и бета-излучени­ем радиоактивных веществ, содержащихся в облаке. Возможно также контактное об­лучение за счет излучения радионуклидов, осевших на кожу и слизистые. Внутрен­нее облучение обусловлено ингаляционным поступлением в организм человека ра­диоактивных продуктов из облака.

Промежуточная фазааварии начинается от момента завершения формирова­ния радиоактивного следа и продолжается до принятия всех необходимых мер защи­ты населения, проведения необходимого объема санитарно-гигиенических и лечебно-профилактических мероприятий. В зависимости от характера и масштаба аварии дли­тельность промежуточной фазы может быть от нескольких дней до нескольких меся­цев после возникновения аварии.

Во время промежуточной фазы основными причинами поражающего действия являются внешнее облучение от радиоактивных веществ, осевших из облака на по­верхность земли, зданий, сооружений и т.п. и сформировавших радиоактивный след, и внутреннее облучение за счет поступления радионуклидов в организм человека с питьевой водой и пищевыми продуктами. Значение ингаляционного фактора опреде­ляется возможностью вдыхания загрязненных мелкодисперсных частиц почвы, пыль­цы растений и т.п., поднятых в воздух в результате вторичного ветрового переноса.

Поздняя (восстановительная) фазаможет продолжаться от нескольких недель до нескольких лет после аварии (до момента, когда отпадает необходимость выпол­нения мер по защите населения) в зависимости от характера и масштабов радиоак­тивного загрязнения. Фаза заканчивается одновременно с отменой всех ограничений на жизнедеятельность населения на загрязненной территории и переходом к обычно­му санитарно-дозиметрическому контролю радиационной обстановки, характерной для условий «контролируемого облучения». На поздней фазе источники и пути внеш­него и внутреннего облучения те же, что и на промежуточной фазе.

В результате крупномасштабных радиационных аварий из поврежденного ядерно­го энергетического реактора в окружающую среду выбрасываются радиоактивные ве­щества в виде газов и аэрозолей, которые образуют радиоактивное облако. Это облако, перемещаясь в атмосфере по направлению ветра, вызывает по пути своего движения радиоактивное загрязнение местности и атмосферы. Местность, загрязненная в резуль­тате выпадения радиоактивных веществ из облака, называется следом облака.

Характер и масштабы последствий радиационных аварий в значительной степе­ни зависят от вида (типа) ядерного энергетического реактора, характера его разруше­ния, а также метеоусловий в момент выброса радиоактивных веществ из поврежден­ного реактора.

Радиационная обстановка за пределами АЭС, на которой произошла авария, оп­ределяется характером радиоактивных выбросов из реактора (типом аварии), движением в атмосфере радиоактивного облака, величиной районов радиоактивного загряз­нения местности, составом радиоактивных веществ.

Основной вклад в мощность дозы на загрязненных территориях внесли изотопы 137Сs и 134Сs (до 80% в 30-километровой зоне и почти 100% за ее пределами). Плот­ность радиоактивного загрязнения долгоживущими изотопами, в особенности 137С8, была значительной и достигала от 15 до 100 Ки/км2.

Радиационная обстановкапредставляет собой совокупность условий, возни­кающих в результате загрязнения местности, приземного слоя воздуха и водоисточ­ников радиоактивными веществами (газами) и оказывающих влияние на аварийно-спасательные работы и жизнедеятельность населения.

Выявление наземной радиационной обстановки предусматривает определение мас­штабов и степени радиоактивного загрязнения местности и приземного слоя атмосферы.

Оценка наземной радиационной обстановки осуществляется с целью определе­ния степени влияния радиоактивного загрязнения на лиц, занятых в ликвидации по­следствий чрезвычайной ситуации, и населения.

Оценка радиационной обстановки может быть выполнена путем расчета с ис­пользованием формализованных документов и справочных таблиц (прогнозирова­ние), а также по данным разведки (оценка фактической обстановки).

К исходным данным для оценки радиационной обстановки при аварии на АЭС относятся: координаты реактора, его тип и мощность, время аварии и реальные ме­теоусловия, прежде всего направление и скорость ветра, облачность, температура воздуха и его вертикальная устойчивость, а также степень защиты людей от ионизи­рующего излучения.

При оценке фактической обстановки, кроме вышеупомянутых исходных дан­ных, обязательно учитывают данные измерения уровня ионизирующего излучения и степени радиоактивного загрязнения местности и объектов.

Метод оценки радиационной обстановки по данным радиационной разведки ис­пользуется после аварии на радиационно-опасном объекте. Он основан на выявлении реальной (фактической) обстановки путем измерения уровней ионизирующего излу­чения и степени радиоактивного загрязнения местности и объектов.

В выводах, которые формулируются силами РСЧС в результате оценки радиаци­онной обстановки, для службы медицины катастроф должно быть указано:

• число людей, пострадавших от ионизирующего излучения; требуемые силы и средства здравоохранения;

• наиболее целесообразные действия персонала АЭС, ликвидаторов, личного состава формирований службы медицины катастроф;

• дополнительные меры защиты различных контингентов людей.

 

Характерной особенностью следа радиоактивного облака при авариях на АЭС является пятнистость (локальность) и мозаичность загрязнения, обусловленная мно­гократностью выбросов, дисперсным составом радиоактивных частиц, разными ме­теоусловиями во время выброса, а также значительно более медленное снижение уровня радиации, чем при ядерных взрывах, обусловленное большим количеством долгоживущих изотопов. По опыту Чернобыля установлено, что уровень радиации за первые сутки снижается в 2 раза, за месяц - в 5, за квартал - в 11, за полгода - в 40 и за год - в 85 раз. При ядерных взрывах при семикратном увеличении времени радио­активность за счет большого количества (более 50%) сверхкоротко- и короткоживущих изотопов уменьшается в 10 раз. Например, если уровень радиации через 1 ч с момента взрыва - 1000 мР/ч, то через 7 ч он составит 100, а через 49 ч - 10 мР/ч.

Основными направлениями предотвращения и снижения потерь и ущерба при радиационных авариях являются:

• рациональное размещение радиационно-опасных объектов с учетом возмож­ных последствий аварии;

• специальные меры по ограничению распространения выброса радиоактив­ных веществ за пределы санитарно-защитной зоны;

• меры по защите персонала и населения.

Особенно важная роль по предотвращению и снижению радиационных пораже­ний отводится следующим мероприятиям по защите персонала АЭС и населения.

1. Использование защищающих от ионизирующего излучения материалов с учетом их коэффициента ослабления (Косл), позволяющего определить, в какой степени уменьшится воздействие ионизирующего излучения на чело­века. Использование коллективных средств защиты (герметизированных помещений, укрытий).

2. Увеличение расстояния от источника ионизирующего излучения, при необ­ходимости - эвакуация населения из зон загрязнения.

3. Сокращение времени облучения и соблюдение правил поведения персона­ла, населения, детей, сельскохозяйственных работников и других контингентов в зоне возможного радиоактивного загрязнения.

4. Проведение частичной или полной дезактивации одежды, обуви, имущест­ва, местности и др.

5. Повышение морально-психологической устойчивости спасателей, персона­ла и населения.

6. Организация санитарно-просветительной работы, проведение занятий, вы­пуск памяток и др.

7. Установление временных и постоянных предельно допустимых доз (уров­ней концентрации) загрязнения радионуклидами пищевых продуктов и во­ды; исключение или ограничение потребления с пищей загрязненных ра­диоактивными веществами продуктов питания и воды.

8. Эвакуация и переселение населения.

9. Простейшая обработка продуктов питания, поверхностно загрязненных

ра­диоактивными веществами (обмыв, удаление поверхностного слоя и т.п.), использование незагрязненных продуктов.

10. Использование средств индивидуальной защиты (костюмы, респираторы).

11. Использование средств медикаментозной защиты (фармакологическая противолучевая защита) - фармакологических препаратов или рецептур для повышения радиорезистентности организма, стимуляции иммунитета и кроветворения.

12. Санитарная обработка людей.