Гематоэнцефалический барьер

Адаптация к постоянно изменяющимся условиям существования связана с необходимостью поддержания гомеостаза. Важное место среди таких гомеостатических механизмов занимает гематоэнцефалический барьер(ГЭБ), выполняющий регуляторную и защитную функции.

ГЭБ объединяет совокупность физиологических механизмов и соответствующих анатомических образований в ЦНС, участвующих в регулировании состава цереброспинальной жидкости(ЦСЖ).

ЦСЖ (ликвор, спинномозговая жидкость) – прозрачная бесцветная жидкость, заполняющая полости желудочков мозга, субарахноидальное пространство головного мозга и спинномозговой канал, периваскулярные и перицеллюлярные пространства в ткани мозга. Выполняет питательные функции, определяет величину внутримозгового давления. Состав ЦСЖ формируется в процессе обмена веществ между мозгом, кровью и тканевой жидкостью, включая все компоненты ткани мозга. В ЦСЖ содержится ряд биологически активных соединений: гормоны гипофиза и гипоталамуса, ГАМК, ацетилхолин, норадреналин, дофамин, серотонин, продукты метаболизма.

Существуют два механизма проникновения веществ в клетки мозга:

1) через ЦСЖ, служащую промежуточным звеном между кровью и нервной или глиальной клеткой (ликворный путь, питательная функция);

2) через стенку капилляра (гематогенный путь).

Представления о ГЭБ:

1) Проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр – нервная клетка;

2) ГЭБ является в большей степени не анатомическим, а функциональным понятием, находится под регулирующим влиянием нервной и гуморальной систем;

3) Ведущим управляющим фактором является уровень деятельности и метаболизма нервной ткани.

Важнейший компонент морфологического субстрата ГЭБ – стенка капилляра мозга. У взрослого организма основным путём движения вещества в нервные клетки является гематогенный путь. Уровень и регуляция физиологической проницаемости клеточной стенки обусловливают динамику поступления в нервные клетки физиологически активных веществ. Регуляция функций ГЭБ осуществляется высшими отделами ЦНС и гуморальными факторами (значительная роль в нейрогуморальной регуляции отводится гипоталамо-гипофизарной системе).

 

Нейроны.

Нейроны – специализированные клетки, способные принимать, обрабатывать, кодировать, передавать и хранить информацию; способные устанавливать контакты с другими нейронами, клетками органов; способные генерировать электрические разряды и передавать информацию с помощью специализированных окончаний – синапсов.

Размеры нейрона 6 – 120 мкм. Число нейронов мозга человека приближается к 1011 . На одном нейроне может быть до 10000 синапсов. Если эти элементы считать хранителями информации, то нервная система может хранить 1019 бит информации.

Строение нейрона: тело (сома) и отростки (длинный - аксон и короткие –дендриты). На протяжении первых 50 – 100 мк аксон не имеет миелиновой оболочки – начальный сегмент. Особенность начального сегмента: высокая возбудимость, порог раздражения примерно в 3 раза ниже, чем других участков.

Серое вещество мозга – тела нейронов. Белое вещество различных отделов мозга – отростки нейронов.

Мембранный потенциал покоя нейрона – 70 мВ, потенциал действия 110 мВ, длительность: 1- 3 мсек. Порог ПД начального сегмента – 10 мВ, порог ПД тела нейрона – 20 – 35 мВ.

Тела нейронов выполняют трофическую функцию по отношению к их отросткам (гибель тела клетки ведет к дегенерации ее отростков).

Типы нейронов.

Строение нейронов в значительной степени соответствует их функциональному назначению. По строению нейроны делят на: униполярные; биполярные; мультиполярные.

Униполярные:

- истинно униполярные нейроны (в ядрах тройничного нерва);

- псевдоуниполярные – имеют два отростка. Оба отростка сливаются вблизи клетки в единый отросток (обеспечивают восприятие болевой, температурной, тактильной, проприоцептивной, вибрационной сигнализации).

Биполярные: имеют один аксон и один дендрит. Встречаются в периферических частях зрительной, слуховой и обонятельной системы.

Мультиполярные: имеют несколько дендритов и один аксон. Встречаются более 60 вариантов мультиполярных нейронов. Располагаются в сером веществе и ганглиях.

Классификации нейронов.

1. Учитывает химическую структуру медиатора, выделяющегося в окончаниях их аксонов: холинергические; норадренергические; дофаминергические; серотонинергические и т.д.

2. По чувствительности к действию раздражителей:

- моносенсорные: чувствительны к разным качествам одного раздражителя. Располагаются в первичных проекционных зонах коры больших полушарий.

- бисенсорные: реагируют на два раздражителя. Например, нейроны вторичной зоны зрительной области коры больших полушарий реагируют на зрительные и слуховые раздражители.

- полисенсорные: реагируют на несколько раздражителей – это нейроны ассоциативных зон коры больших полушарий.

3. По функциональному назначению:

- рецепторные (чувствительные, афферентные, сенсорные);

- эффекторные (эфферентные);

- контактные (вставочные, ассоциативные, интернейроны).

Афферентные нейроны.

Биполярные нервные клетки, выполняющие функцию восприятия и проведения возбуждения от периферических рецепторов в ЦНС.

Тело округлой формы находится вне ЦНС, в спинальном ганглии, имеет один отросток, который затем Т-образно делится.

Один отросток идет на периферию и образует там чувствительные окончания (рецепторы). Другой отросток идет в ЦНС, где ветвится и формирует синаптические окончания на вставочных или эффекторных клетках.

Генерация потенциала действия в афферентных волокнах отмечается в первом от рецептора перехвате Ранвье.

Тело афферентной клетки в возбуждении участия не принимает. Выполняет трофическую функцию. Терминальная часть афферентного волокна ветвится, обеспечивая передачу возбуждения от одного рецептора к нескольким вставочным нейронам.

Вставочные нейроны.

Составляют 90% всех нейронов. Отростки не покидают пределов ЦНС, но обеспечивают многочисленные связи по горизонтали и вертикали.

Особенность: могут генерировать потенциал действия с частотой 1000 в сек. Причина - короткая фаза следовой гиперполяризации.

Вставочные нейроны осуществляют обработку информации; осуществляют связь между эфферентными и афферентными нейронами. Делятся на возбуждающие и тормозные.

Эфферентные нейроны.

Это нейроны, передающие информацию от нервного центра к исполнительным органам.

Пирамидные клетки двигательной зоны коры больших полушарий, посылающие импульсы к мотонейронам передних рогов спинного мозга.

Мотонейроны – аксоны выходят за пределы ЦНС и заканчиваются синапсом на эффекторных структурах.

Терминальная часть аксона ветвится, но есть ответвления и вначале аксона – аксонные коллатерали. Место перехода тела мотонейрона в аксон – аксонный холмик – наиболее возбудимый участок. Здесь генерируется ПД, затем распространяется по аксону.

На теле нейрона огромное количество синапсов. Если синапс образован аксоном возбуждающего интернейрона, то при действии медиатора на постсинаптической мембране возникает деполяризация или ВПСП (возбуждающий постсинаптический потенциал). Если синапс образован аксоном тормозной клетки, то при действии медиатора на постсинаптической мембране возникает гиперполяризация или ТПСП. Алгебраическая сумма ВПСП и ТПСП на теле нервной клетке проявляется в возникновении ПД в аксонном холмике.

Ритмическая активность мотонейронов в нормальных условиях 10 импульсов в секунду, но может возрастать в несколько раз.

Проведение возбуждения.

ПД распространяется за счет местных токов ионов, возникающих между возбужденным и невозбужденным участками мембраны. Так как ПД генерируется без затрат энергии, то нерв обладает самой низкой утомляемостью.

Объединения нейронов.

Существуют разные термины, обозначающие объединения нейронов.

Нервный центр – комплекс нейронов в одном или разных местах ЦНС (например, дыхательный центр).

Нейронные цепи – последовательно соединенные нейроны, выполняющие определенную задачу (с этой точки зрения рефлекторная дуга – тоже нейронные цепи).

Нейронные сети – более обширное понятие, т.к. помимо последовательных цепей имеются параллельные цепи нейронов, а также связи между ними. Нейронные сети – это структуры, выполняющие сложные задачи (например, задачи по обработке информации).

 

НЕРВНАЯ РЕГУЛЯЦИЯ