Источник и приемник движутся друг относительно друга

Этот случай обобщает два предыдущих. Частота колебаний, воспринимаемых приемником: .

Верхний знак берется, если при движении источника или приемника происходит их сближение, нижний знак — в случае их взаимного удаления.

Если направления скоростей не совпадают с проходящей через источник и приемник прямой, то вместо этих скоростей в формуле надо брать их проекцию на направление этой прямой.

 

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

«Если бы в результате какой-то мировой катастрофы все накопленные научные знания оказались бы уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это — атомная гипотеза (можете называть её не гипотезой, а фактом, но это ничего не меняет): все тела состоят из атомов маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольшом расстоянии, но оттал­киваются, если одно из них плотнее прижать к другому. В одной этой фразе, как вы увидите, содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения».

Ричард Фейнман

http://www.i1t.kharkov.ua/bvi/ogurtsov/ogurtsov.htm http://kart.edu.ua/books/ln/index.html


 

Молекулярно-кинетическая теория идеальных газов

1. Статистический и термодинамический методы исследования.

Молекулярная физика и термодинамика — разделы физики, в которых изучаются зависимости свойств тел от их строения, взаимодействия между частицами, из которых состоят тела, и характера движения частиц.

Для исследования физических свойств макроскопических систем, связанных с огромным числом содержащихся в них атомов и молекул, применяют двакачественно различных и взаимно дополняющих друг друга метода: статистический (или молекулярно-кинетический) и термодинамический.

Статистический метод— это метод исследования систем из большого числа частиц, оперирующий статистическими закономерностями и средними (усредненными) значениями физических величин, характеризующих всю систему.

Этот метод лежит в основе молекулярной физики — раздела физики, изучающего строение и свойства вещества исходя из молекулярно-кинетических представлений,основывающихся на том, что все тела состоят из атомов, молекул или ионов находящихся в непрерывном хаотическом движении.

В дальнейшем мы будем использовать термин "молекула" имея ввиду мельчайшую структурную единицу (элемент) данного вещества.

Термодинамический метод— это метод исследования систем из большого числа частиц, оперирующий величинами, характеризующими систему в целом {например, давление, объем, температура) при различных превращениях энергии, происходящих в системе, не учитывая при этом внутреннего строения изучаемых тел и характера движения отдельных частиц.

Этот метод лежит в основе термодинамики — раздела физики, изучающего общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями.

2. Термодинамическая система.

Термодинамика имеет дело с термодинамической системой

совокупностью макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами (внешней средой).

Термодинамические системы, не обменивающиеся с внешней средой ни энергией, ни веществом, называются замкнутыми.

Основа термодинамического метода — определение состояния термодинамической системы.

Состояние системы задается термодинамическими параметрами (параметрами состояния) — совокупностью физических величин, характеризующих свойства термодинамической системы. Обычно в качестве параметров состояния выбирают температуру, давление и объем.

Параметры состояния системы могут изменяться. Любое изменение в термодинамической системе, связанное с изменением хотя бы одного из ее термодинамических параметров, называется термодинамическим процессом. Если для данной системы внешние условия не изменяются и состояние системы с течением времени не меняется, то этасистема находится в термодинамическом равновесии.

3. Температура.

Температура — одно из основных понятий, играющих важнейшую роль в физике в целом.

Температура — физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы и определяющая направление теплообмена между телами.

В настоящее время используют две температурные шкалы.

Международная практическая шкала (шкала Цельсия )градуированная в градусах Цельсия (°С) по двум реперным точкам — температурам замерзания и кипения воды при давлении 1,013∙105 Па, которые принимаются соответственно 0°С и 100°С.

Термодинамическая температурная шкала (шкала Кельвина), градуированная в градусах Кельвина (К) определяется по одной реперной точке — тройной точке воды — температуре, при которой лед, вода и насыщенный пар при давлении 609 Па находятся в термодинамическом равновесии. Температура этой точки по данной шкале равна 273,16 К. Температура Т = 0 К называется нулем Кельвина.

Термодинамическая температура (Г) и температура (t) по Международной практической шкале связаны соотношением

Т = 273,15 +t

Нормальные условия: Т0 = 273,15 К = 0°С, р0 = 101325 Па.

4. Идеальный газ.

Физическая модель, согласно которой:

1) собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

2) между молекулами газа отсутствуют силы взаимодействия;

3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Исходя из этого идеальный газ можно рассматривать как совокупность беспорядочно движущихся молекул-шариков, имеющих пренебрежимо малый собственный объем и не взаимодействующих друг с другом на расстоянии.