Синапс. Строение и функции. Медиаторы.

Термин «синапс» был введен Ч.Шеррингтоном. Синапсом на­зывается функциональное соединение между нервной клеткой и другими клетками. Синапсы — это те участки, где нервные им­пульсы могут влиять на деятельность постсинаптической клетки, возбуждая или тормозя ее. Существуют две разновидности си­напсов: электрические и химические. В химическом синапсе вы­деляется медиатор, генерирующий потенциалы на постсинапти­ческой мембране, а в электрическом от пресинаптического ней­рона к постсинаптическому идет электрический ток. Электрические синапсы. Этим синапсам свойственны очень узкая синаптическая щель и очень низкое удельное сопротивление пре- и постсинаптических мембран, что обеспечивает прохождение локальных элект­рических токов. Низкое сопротивление связано с наличием каналов, пересекающих обе мембраны, т.е. идущих из клетки в клетку (щелевой контакт). Каналы образуются белковыми молекулами контактирующих мембран, которые соединяются комплементар­но. Ток, вызванный пресинаптическим потенциалом действия, Раздражает постсинаптическую мембрану, где возникает ВПСП, а затем и потенциал действия. Электрические синапсы формируются, как правило, между клетками одного типа (например, между клетками сердечной мышцы). Химические синапсы Химические синапсы можно классифицировать по их местоположению и принадлежности, соответствующим структурам: периферические (нервно-мышечные, нейросекреторные, рецепторно-нейрональные); центральные (аксосоматические, аксодендритные, аксоаксональные, соматодендритные, соматосоматические); по знаку их действия — возбуждающие и тормозящие; по медиатору, который осуществляет передачу, — холинергические, адренергические, серотонинергические, глицинергические и т.д. Синапс состоит из трех основных элементов: пресинаптичской мембраны, постсинаптической мембраны и синаптической щели. Особенностью постсинаптической мембраны является наличие в ней специальных рецепторов, чувствительных к определенному медиатору, и наличие хемозависимых ионных каналов Возбуждение передается с помощью медиаторов (посредников). Медиаторы — это химические вещества, которые в зависимости от их природы делятся на следующие группы: моноамины (ацетилхолин, дофамин, норадреналин, серотонин), аминокислоты (гамма-аминомасляная кислота — ГАМК, глутаминовая кислот глицин и др.) и нейропептиды (вещество Р, эндорфины, нейротензин, ангиотензин, вазопрессин, соматостатин и др.). Медиатор находится в пузырьках пресинаптического утолщения, куда он может поступать либо из центральной области нейрона с помощью аксонального транспорта, либо за счет обратного захвата медиатора из синаптической щели. Он может также синтезироваться в синаптических терминалях из продуктов его расщепления. Когда к окончанию аксона приходит ПД и пресинаптическая мембрана деполяризуется, ионы кальция начинают поступать из внеклеточной жидкости внутрь нервного окончания. Кальций активирует перемещение синаптических пузырьков к пресинаптической мембране, где они разрушаются с выходом медиатора в синаптическую щель. В возбуждающих синапсах медиатор диффундирует в щели и связывается с рецепторами постсинаптической мембраны, что приводит к открытию каналов для ионов натрия, а, следовательно, к ее деполяризации - возникновению возбуждающего постсинаптического потенциала (ВПСП). Между деполяризованной мембраной и соседними ней участками возникают местные токи. Если они деполяризую мембрану до критического уровня, то в ней возникает потенциал действия. В тормозных синапсах медиатор, например, глицин аналогичным образом взаимодействует с рецепторами постсинаптической мембраны, но открывает в ней калиевые и/или хлорные каналы, что вызывает переход ионов по концентрационному градиенту: калия из клетки, а хлора — внутрь клетки. Это приводит к гиперполяризации постсинаптической мембраны - возникновению тормозного постсинаптического потенциала (ТПСП). Один и тот же медиатор может связываться не с одним, а несколькими различными рецепторами. Так, ацетилхолин нервно-мышечных синапсов скелетных мышц взаимодействует с Н-холинорецепторами, которые открывают каналы для натрия. К окончанию нервного волокна приходит потенциал действия (ПД); синаптические пузырьки высвобождают медиатор (ацетилхолин) в синапти­ческую щель; ацетилхолин (АХ) связывается с рецепторами постсинапти­ческой мембраны; потенциал постсинаптической мембраны снижается от минус 85 до минус 10 мВ (возникает ВПСП). Под действием тока, иду­щего от деполяризованного участка к недеполяризованным, возникает потенциал действия на мембране мышечного волокна, что вызывает ВПСП, а в вагосердечных синапсах он действует на М-холинорецепторы, открывающие каналы для ионов калия (ге­нерируется ТПСП). Следовательно, возбуждающий или тормоз­ной характер действия медиатора определяется свойствами постсинаптической мембраны (видом рецептора), а не самого ме­диатора. Кроме нейромедиаторов, пресинаптические окончания выде­ляют вещества, которые не участвуют непосредственно в переда­че сигнала и играют роль нейромодуляторов эффектов сигнала. Модуляция осуществляется влиянием либо на выделение медиа­тора, либо на его связывание рецепторами постсинаптического нейрона, а также на реакцию этого нейрона на медиаторы. Функ­цию классических медиаторов выполняют амины и аминокислоты. Функцию нейромодуляторов — нейропептиды. Медиаторы синтезируются в основном в терминалах аксона, нейропептиды образуются в теле нейрона путем синтеза белков, от которых они отщепляются под влиянием протеаз. Синапсы с химической передачей возбуждения обладают ря­дом общих свойств: возбуждение через синапсы проводится только в одном направлении, что обусловлено строением синапса (медиатор выделяется только из пресинаптической мембраны и взаимодействует с рецепторами постсинаптической мембраны); передача возбуждения через синапсы осуществляется медленнее, чем по нервному волокну (синаптическая задержка); синапсы обладают низкой лабильностью и высокой утомляемостью, а также высокой чувствительностью к химическим (в том числе и к фармакологическим) веществам; в синапсах происходит трансфор­мация ритма возбуждения.