Подходы к проектированию ИС и этапы

Инфологическое проектирование

Концептуальное (инфологическое) проектирование — построение семантической модели предметной области, то есть информационной модели наиболее высокого уровня абстракции. Такая модель создаётся без ориентации на какую-либо конкретную СУБД и модель данных. Термины «семантическая модель», «концептуальная модель» и «инфологическая модель» являются синонимами. Кроме того, в этом контексте равноправно могут использоваться слова «модель базы данных» и «модель предметной области» (например, «концептуальная модель базы данных» и «концептуальная модель предметной области»), поскольку такая модель является как образом реальности, так и образом проектируемой базы данных для этой реальности.

Конкретный вид и содержание концептуальной модели базы данных определяется выбранным для этого формальным аппаратом. Обычно используются графические нотации, подобные ER-диаграммам.

Чаще всего концептуальная модель базы данных включает в себя:

· описание информационных объектов, или понятий предметной области и связей между ними.

· описание ограничений целостности, т.е. требований к допустимым значениям данных и к связям между ними.

 

Даталогическое проектирование

Логическое (даталогическое) проектирование — создание схемы базы данных на основе конкретной модели данных, например, реляционной модели данных. Для реляционной модели данных даталогическая модель — набор схем отношений, обычно с указанием первичных ключей, а также «связей» между отношениями, представляющих собой внешние ключи.

Преобразование концептуальной модели в логическую модель, как правило, осуществляется по формальным правилам. Этот этап может быть в значительной степени автоматизирован.

На этапе логического проектирования учитывается специфика конкретной модели данных, но может не учитываться специфика конкретной СУБД.

 

12. Модель «Сущность-связь»

 

В реальном проектировании структуры базы данных применяются метод - так называемое, семантическое моделирование. Семантическое моделирование представляет собой моделирование структуры данных, опираясь на смысл этих данных. В качестве инструмента семантического моделирования используются различные варианты диаграмм сущность-связь (ER - Entity-Relationship).

Первый вариант модели сущность-связь был предложен в 1976 г. Питером Пин-Шэн Ченом. В дальнейшем многими авторами были разработаны свои варианты подобных моделей (нотация Мартина, нотация IDEF1X, нотация Баркера и др.). Кроме того, различные программные средства, реализующие одну и ту же нотацию, могут отличаться своими возможностями. По сути, все варианты диаграмм сущность-связь исходят из одной идеи - рисунок всегда нагляднее текстового описания. Все такие диаграммы используют графическое изображение сущностей предметной области, их свойств (атрибутов), и взаимосвязей между сущностями.

Мы опишем работу с ER-диаграммами близко к нотации Баркера, как довольно легкой в понимании основных идей. Данная глава является скорее иллюстрацией методов семантического моделирования, чем полноценным введением в эту область.

Основные понятия ER-диаграмм

Определение 1. Сущность – это класс однотипных объектов, информация о которых должна быть учтена в модели.

Каждая сущность должна иметь наименование, выраженное существительным в единственном числе.

Примерами сущностей могут быть такие классы объектов как "Поставщик", "Сотрудник", "Накладная".

Каждая сущность в модели изображается в виде прямоугольника с наименованием:

Рис. 1

 

Определение 2. Экземпляр сущности - это конкретный представитель данной сущности.

Например, представителем сущности "Сотрудник" может быть "Сотрудник Иванов".

Экземпляры сущностей должны быть различимы, т.е. сущности должны иметь некоторые свойства, уникальные для каждого экземпляра этой сущности.

Определение 3. Атрибут сущности - это именованная характеристика, являющаяся некоторым свойством сущности.

Наименование атрибута должно быть выражено существительным в единственном числе (возможно, с характеризующими прилагательными).

Примерами атрибутов сущности "Сотрудник" могут быть такие атрибуты как "Табельный номер", "Фамилия", "Имя", "Отчество", "Должность", "Зарплата" и т.п.

Атрибуты изображаются в пределах прямоугольника, определяющего сущность:

Рис. 2

 

Определение 4. Ключ сущности - это неизбыточный набор атрибутов, значения которых в совокупности являются уникальными для каждого экземпляра сущности. Неизбыточность заключается в том, что удаление любого атрибута из ключа нарушается его уникальность.

Сущность может иметь несколько различных ключей.

Ключевые атрибуты изображаются на диаграмме подчеркиванием:

Рис. 3

 

Определение 5. Связь - это некоторая ассоциация между двумя сущностями. Одна сущность может быть связана с другой сущностью или сама с собою.

Связи позволяют по одной сущности находить другие сущности, связанные с нею.

Например, связи между сущностями могут выражаться следующими фразами - "СОТРУДНИК может иметь несколько ДЕТЕЙ", "каждый СОТРУДНИК обязан числиться ровно в одном ОТДЕЛЕ".

Графически связь изображается линией, соединяющей две сущности:

Рис. 4

 

Каждая связь имеет два конца и одно или два наименования. Наименование обычно выражается в неопределенной глагольной форме: "иметь", "принадлежать" и т.п. Каждое из наименований относится к своему концу связи. Иногда наименования не пишутся ввиду их очевидности.

Каждая связь может иметь один из следующих типов связи:

Рис. 5

 

Связь типа один-к-одному означает, что один экземпляр первой сущности (левой) связан с одним экземпляром второй сущности (правой). Связь один-к-одному чаще всего свидетельствует о том, что на самом деле мы имеем всего одну сущность, неправильно разделенную на две.

Связь типа один-ко-многим означает, что один экземпляр первой сущности (левой) связан с несколькими экземплярами второй сущности (правой). Это наиболее часто используемый тип связи. Левая сущность (со стороны "один") называется родительской, правая (со стороны "много") - дочерней. Характерный пример такой связи приведен на Рис. 4.

Связь типа много-ко-многим означает, что каждый экземпляр первой сущности может быть связан с несколькими экземплярами второй сущности, и каждый экземпляр второй сущности может быть связан с несколькими экземплярами первой сущности. Тип связи много-ко-многим является временным типом связи, допустимым на ранних этапах разработки модели. В дальнейшем этот тип связи должен быть заменен двумя связями типа один-ко-многим путем создания промежуточной сущности.

Каждая связь может иметь одну из двух модальностей связи:

Рис. 6

 

Модальность "может" означает, что экземпляр одной сущности может быть связан с одним или несколькими экземплярами другой сущности, а может быть и не связан ни с одним экземпляром.

Модальность "должен" означает, что экземпляр одной сущности обязан быть связан не менее чем с одним экземпляром другой сущности.

Связь может иметь разную модальность с разных концов (как на Рис. 4).

Описанный графический синтаксис позволяет однозначно читать диаграммы, пользуясь следующей схемой построения фраз:

<Каждый экземпляр СУЩНОСТИ 1> <МОДАЛЬНОСТЬ СВЯЗИ> <НАИМЕНОВАНИЕ СВЯЗИ> <ТИП СВЯЗИ> <экземпляр СУЩНОСТИ 2>.

Каждая связь может быть прочитана как слева направо, так и справа налево. Связь на Рис. 4 читается так:

Слева направо: "каждый сотрудник может иметь несколько детей".

Справа налево: "Каждый ребенок обязан принадлежать ровно одному сотруднику".

 

Подходы к проектированию ИС и этапы

Информационная система (ИС) – совокупность технического, программного и организационного обеспечения, а также персонала, предназначенная для того, чтобы своевременно обеспечивать надлежащих людей надлежащей информацией.

ФЗ РФ от 27 июля 2006 г. №149 – ФЗ «Об информации, ИТ и о защите информации»:

ИС – совокупность содержащейся в БД информации и обеспечивающих её обработку ИТ и технических средств.

 

Информация в современном мире превратилась в один из наиболее важных ресурсов, а информационные системы (ИС) стали необходимым инструментом практически во всех сферах деятельности.

Разнообразие задач, решаемых с помощью ИС, привело к появлению множества разнотипных систем, отличающихся принципами построения и заложенными в них правилами обработки информации.

Информационные системы можно классифицировать по целому ряду различных признаков. В основу рассматриваемой классификации положены наиболее существенные признаки, определяющие функциональные возможности и особенности построения современных систем. В зависимости от объема решаемых задач, используемых технических средств, организации функционирования, информационные системы делятся на ряд групп (классов) (рис. 1.1).

По типу хранимых данных ИС делятся на фактографические и документальные. Фактографические системы предназначены для хранения и обработки структурированных данных в виде чисел и текстов. Над такими данными можно выполнять различные операции. В документальных системах информация представлена в виде документов, состоящих из наименований, описаний, рефератов и текстов. Поиск по неструктурированным данным осуществляется с использованием семантических признаков. Отобранные документы предоставляются пользователю, а обработка данных в таких системах практически не производится.

Основываясь на степени автоматизации информационных процессов в системе управления фирмой, информационные системы делятся на ручные, автоматические и автоматизированные.

Рис. 1.1. Классификация информационных систем

 

Ручные ИС характеризуются отсутствием современных технических средств переработки информации и выполнением всех операций человеком.

В автоматических ИС все операции по переработке информации выполняются без участия человека.

Автоматизированные ИС предполагают участие в процессе обработки информации и человека, и технических средств, причем главная роль в выполнении рутинных операций обработки данных отводится компьютеру. Именно этот класс систем соответствует современному представлению понятия "информационная система".

В зависимости от характера обработки данных ИС делятся на информационно-поисковые и информационно-решающие.

Информационно-поисковые системы производят ввод, систематизацию, хранение, выдачу информации по запросу пользователя без сложных преобразований данных. (Например, ИС библиотечного обслуживания, резервирования и продажи билетов на транспорте, бронирования мест в гостиницах и пр.)

Информационно-решающие системы осуществляют, кроме того, операции переработки информации по определенному алгоритму. По характеру использования выходной информации такие системы принято делить на управляющие и советующие.

Результирующая информация управляющих ИС непосредственно трансформируется в принимаемые человеком решения. Для этих систем характерны задачи расчетного характера и обработка больших объемов данных. (Например, ИС планирования производства или заказов, бухгалтерского учета.)

Советующие ИС вырабатывают информацию, которая принимается человеком к сведению и учитывается при формировании управленческих решений, а не инициирует конкретные действия. Эти системы имитируют интеллектуальные процессы обработки знаний, а не данных. (Например, экспертные системы.)

В зависимости от сферы применения различают следующие классы ИС.

Информационные системы организационного управления - предназначены для автоматизации функций управленческого персонала как промышленных предприятий, так и непромышленных объектов (гостиниц, банков, магазинов и пр.).

Основными функциями подобных систем являются: оперативный контроль и регулирование, оперативный учет и анализ, перспективное и оперативное планирование, бухгалтерский учет, управление сбытом, снабжением и другие экономические и организационные задачи.

ИС управления технологическими процессами (ТП) - служат для автоматизации функций производственного персонала по контролю и управлению производственными операциями. В таких системах обычно предусматривается наличие развитых средств измерения параметров технологических процессов (температуры, давления, химического состава и т.п.), процедур контроля допустимости значений параметров и регулирования технологических процессов.

ИС автоматизированного проектирования (САПР) - предназначены для автоматизации функций инженеров-проектировщиков, конструкторов, архитекторов, дизайнеров при создании новой техники или технологии. Основными функциями подобных систем являются: инженерные расчеты, создание графической документации (чертежей, схем, планов), создание проектной документации, моделирование проектируемых объектов.

Интегрированные (корпоративные) ИС - используются для автоматизации всех функций фирмы и охватывают весь цикл работ от планирования деятельности до сбыта продукции. Они включают в себя ряд модулей (подсистем), работающих в едином информационном пространстве и выполняющих функции поддержки соответствующих направлений деятельности.

Существует классификация ИС в зависимости от уровня управления, на котором система используется.

Информационная система оперативного уровня - поддерживает исполнителей, обрабатывая данные о сделках и событиях (счета, накладные, зарплата, кредиты, поток сырья и материалов). Информационная система оперативного уровня является связующим звеном между фирмой и внешней средой.

Задачи, цели, источники информации и алгоритмы обработки на оперативном уровне заранее определены и в высокой степени структурированы.

Информационные системы специалистов - поддерживают работу с данными и знаниями, повышают продуктивность и производительность работы инженеров и проектировщиков. Задача подобных информационных систем - интеграция новых сведений в организацию и помощь в обработке бумажных документов.

Информационные системы уровня менеджмента - используются работниками среднего управленческого звена для мониторинга, контроля, принятия решений и администрирования. Основные функции этих информационных систем:

· сравнение текущих показателей с прошлыми;

· составление периодических отчетов за определенное время, а не выдача отчетов по текущим событиям, как на оперативном уровне;

· обеспечение доступа к архивной информации и т.д.

Стратегическая информационная система - компьютерная информационная система, обеспечивающая поддержку принятия решений по реализации стратегических перспективных целей развития организации.

Информационные системы стратегического уровня помогают высшему звену управленцев решать неструктурированные задачи, осуществлять долгосрочное планирование. Основная задача - сравнение происходящих во внешнем окружении изменений с существующим потенциалом фирмы. Они призваны создать общую среду компьютерной телекоммуникационной поддержки решений в неожиданно возникающих ситуациях. Используя самые совершенные программы, эти системы способны в любой момент предоставить информацию из многих источников. Некоторые стратегические системы обладают ограниченными аналитическими возможностями.

Методология проектирования информационных систем описывает процесс создания и сопровождения систем в виде жизненного цикла (ЖЦ) ИС, представляя его как некоторую последовательность стадий и выполняемых на них процессов. Для каждого этапа определяются состав и последовательность выполняемых работ, получаемые результаты, методы и средства, необходимые для выполнения работ, роли и ответственность участников и т.д. Такое формальное описание ЖЦ ИС позволяет спланировать и организовать процесс коллективной разработки и обеспечить управление этим процессом.

Жизненный цикл ИС можно представить как ряд событий, происходящих с системой в процессе ее создания и использования.

Модель жизненного цикла отражает различные состояния системы, начиная с момента возникновения необходимости в данной ИС и заканчивая моментом ее полного выхода из употребления. Модель жизненного цикла - структура, содержащая процессы, действия и задачи, которые осуществляются в ходе разработки, функционирования и сопровождения программного продукта в течение всей жизни системы, от определения требований до завершения ее использования.

В настоящее время известны и используются следующие модели жизненного цикла:

· Каскадная модель (рис. 2.1) предусматривает последовательное выполнение всех этапов проекта в строго фиксированном порядке. Переход на следующий этап означает полное завершение работ на предыдущем этапе.

· Поэтапная модель с промежуточным контролем (рис. 2.2). Разработка ИС ведется итерациями с циклами обратной связи между этапами. Межэтапные корректировки позволяют учитывать реально существующее взаимовлияние результатов разработки на различных этапах; время жизни каждого из этапов растягивается на весь период разработки.

· Спиральная модель (рис. 2.3). На каждом витке спирали выполняется создание очередной версии продукта, уточняются требования проекта, определяется его качество и планируются работы следующего витка.Особое внимание уделяется начальным этапам разработки - анализу и проектированию, где реализуемость тех или иных технических решений проверяется и обосновывается посредством создания прототипов (макетирования).

Рис. 2.1. Каскадная модель ЖЦ ИС

 

Рис. 2.2. Поэтапная модель с промежуточным контролем

 

Рис. 2.3. Спиральная модель ЖЦ ИС

На практике наибольшее распространение получили две основные модели жизненного цикла:

· каскадная модель (характерна для периода 1970-1985 гг.);

· спиральная модель (характерна для периода после 1986.г.).

В ранних проектах достаточно простых ИС каждое приложение представляло собой единый, функционально и информационно независимый блок. Для разработки такого типа приложений эффективным оказался каскадный способ. Каждый этап завершался после полного выполнения и документального оформления всех предусмотренных работ.

Можно выделить следующие положительные стороны применения каскадного подхода:

· на каждом этапе формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности;

· выполняемые в логической последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие затраты.

Каскадный подход хорошо зарекомендовал себя при построении относительно простых ИС, когда в самом начале разработки можно достаточно точно и полно сформулировать все требования к системе. Основным недостатком этого подхода является то, что реальный процесс создания системы никогда полностью не укладывается в такую жесткую схему, постоянно возникает потребность в возврате к предыдущим этапам и уточнении или пересмотре ранее принятых решений. В результате реальный процесс создания ИС оказывается соответствующим поэтапной модели с промежуточным контролем.

Однако и эта схема не позволяет оперативно учитывать возникающие изменения и уточнения требований к системе. Согласование результатов разработки с пользователями производится только в точках, планируемых после завершения каждого этапа работ, а общие требования к ИС зафиксированы в виде технического задания на все время ее создания. Таким образом, пользователи зачастую получают систему, не удовлетворяющую их реальным потребностям.

Спиральная модель ЖЦ была предложена для преодоления перечисленных проблем. На этапах анализа и проектирования реализуемость технических решений и степень удовлетворения потребностей заказчика проверяется путем создания прототипов. Каждый виток спирали соответствует созданию работоспособного фрагмента или версии системы. Это позволяет уточнить требования, цели и характеристики проекта, определить качество разработки, спланировать работы следующего витка спирали. Таким образом углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который удовлетворяет действительным требованиям заказчика и доводится до реализации.

Итеративная разработка отражает объективно существующий спиральный цикл создания сложных систем. Она позволяет переходить на следующий этап, не дожидаясь полного завершения работы на текущем и решить главную задачу - как можно быстрее показать пользователям системы работоспособный продукт, тем самым активизируя процесс уточнения и дополнения требований.

Основная проблема спирального цикла - определение момента перехода на следующий этап. Для ее решения вводятся временные ограничения на каждый из этапов жизненного цикла, и переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. Планирование производится на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков.

Несмотря на настойчивые рекомендации компаний - вендоров и экспертов в области проектирования и разработки ИС, многие компании продолжают использовать каскадную модель вместо какого-либо варианта итерационной модели.

Каждая из стадий создания системы предусматривает выполнение определенного объема работ, которые представляются в виде процессов ЖЦ. Процесс определяется как совокупность взаимосвязанных действий, преобразующих входные данные в выходные. Описание каждого процесса включает в себя перечень решаемых задач, исходных данных и результатов.

Существует целый ряд стандартов, регламентирующих ЖЦ ПО, а в некоторых случаях и процессы разработки.

Значительный вклад в теорию проектирования и разработки информационных систем внесла компания IBM, предложив еще в середине 1970-х годов методологию BSP (Business System Planning - методология организационного планирования). Метод структурирования информации с использованием матриц пересечения бизнес-процессов, функциональных подразделений, функций систем обработки данных (информационных систем), информационных объектов, документов и баз данных, предложенный в BSP, используется сегодня не только в ИТ-проектах, но и проектах по реинжинирингу бизнес-процессов, изменению организационной структуры. Важнейшие шаги процесса BSP, их последовательность (получить поддержку высшего руководства, определить процессы предприятия, определить классы данных, провести интервью, обработать и организовать данные интервью) можно встретить практически во всех формальных методиках, а также в проектах, реализуемых на практике.