Средства измерений, вспомогательные устройства, реактивы и материалы

 

Средства измерений и стандартные образцы

Спектрометр атомно-абсорбционный "МГА-915" ТУ 4434-915-205016233-98
Весы лабораторные общего назначения 2-го класса точности, например ВЛР-200 ГОСТ 24104 – 88
Меры массы ГОСТ 7328 – 82
Мерные колбы 2-1000-2, 2-100-2, 2-50-2 ГОСТ 1770 – 74
Пипетки градуированные 2-го класса точности вместимостью 1, 2 , 5 и 10 см3 ГОСТ 29227 - 91
Дозатор пипеточный одноканальный переменного объема 5-50 мм3. Погрешность измерения – не более ±5 % ТУ 9452-001-33189998-95
Государственные стандартные образцы состава раствора определяемых ионов (1 мг/см3, погрешность аттестованного значения ±1 %): ГСО 7266 - 96
• марганца ГСО 7266 - 96
• меди ГСО 7255 - 96
• железа ГСО 7254 - 96
• цинка ГСО 7256 - 96
• хром ГСО 7768 - 2000

 

Допускается использование средств измерений и стандартных образцов с аналогичными или лучшими метрологическими характеристиками. Средства измерений должны быть поверены в установленные сроки.

 

ОЖЕ-СПЕКТРОСКОПИЯ


раздел электронной спектроскопии, методы к-рого основаны на измерении энергии и интенсивности токов оже-электронов, эмиттированных из атомов, молекул и тв. тел при оже-эффекте. Энергия оже-электронов определяется природой испускающих их атомов и их хим. окружением, что позволяет определять атомы в соединениях и получать информацию об их хим. состоянии. О.-с. применяют как для фундам. исследований, так и для элементного анализа. В зависимости от способа возбуждения атомов — электронным, фотонным, ионным пучками — различают электронную, фотоэлектронную и ионную О.-с. (соотв. ЭОС, ФОС и ИОС). Спектры оже-электронов получают и регистрируют с помощью оже-спектрометров. Наиболее распространены электронные оже-спектрометры на базе анализаторов энергии эл-нов типа цилиндрич. зеркала и четырёхсеточного анализатора с тормозящим полем (рис. 1). Электронный пучок от электронной пушки направляется на образец, находящийся в вакуумной камере (до 10-10 мм рт. ст.), В спектрометрах первого типа (их чувствительность на два порядка выше, чем спектрометров второго типа) потенциал внеш. цилиндрич. электрода анализатора 2 искривляет траектории оже-электронов в зависимости от их энергии. В результате каждому значению потенциала будет соответствовать определ. энергия оже-электронов, попавших в электронный умножитель 6. В спектрометрах второго типа энергия электронов, попадающих на коллектор анализатора 2, зависит от задерживающего потенциала на сетках. Обычно регистрируют не энергетич. распределение числа N эмиттированных эл-нов по энергиям ?, а производную dN(?)/d? (рис. 2), что повышает чувствительность метода.

Список литературы

Арапов Б.А. и др. Об одном пути усиления эффекта оже-деструкции в молекулярных системах. // Изв. вузов. Физика. - 2000.- т.43, N.1. - с.98-100.

Карлосон Т. А. Фотоэлектронная и Оже-спектроскопия. – Л.: 1981.

Кнунянц И.Л. Химический энциклопедический словарь. – М.: Советская энциклопедия, 1983, 397с.

Паралис Э.С. Эффект Оже. – Таш.: 1969.

Прохоров А.М. Физический энциклопедический словарь. – М.: Советская энциклопедия, 1983, 483–484с.

Розанов Л.Н. Вакууьная техника. – М.: Высшая школа, 1990.

Шульман А.Р., Фридрихов С.А, Вторично-эмиссионные методы исследования твердого тела. – М.: 1977.

Ivan P.Christov, Margaret M.Murane, and Henry C.Kapteyn. Phys.Rev.Lett., v.78, 1251 (1997).

M.Drescher, M.Hentschel, R.Kienberger et al., Science v.291 , 1923 (2001).

M.Drescher, M.Hentschel, R.Kienberger et al. Nature, v.419, 803 (2002).

Thomas Brabec and Ferenc Krausz. Rev.Mod.Phys., v.72, 545 (2000).

Еловиков С.С. Разрушение поверхности твердого тела медленными электронами // Соросовский Образовательный Журнал. 1999. № 10. С. 100 – 107.

Еловиков С.С. Оже-электронная спектроскопия // Там же. 2001. № 2. Том 7. С. 82 – 88.

Петров В.И. Катодолюминесценция полупроводников в узких электронных пучках в сканирующем электронном микроскопе // Там же. 1997. № 10. С. 126 – 132.