Диссоциация растворов электролитов

.Электролиты – вещества, которые при растворении подвергаются диссоциации на ионы. В результате раствор приобретает способность проводить электрический ток, т.к. в нем появляются подвижные носители электрического заряда. Например, при растворении в воде уксусная кислота диссоциирует на ион водорода и ацетат-ион:

CH3COOH H+ + CH3COO

Необходимым условием, определяющим возможность процесса электролитической диссоциации, является наличие в растворяемом веществеионных * или полярных связей *, а также достаточная полярность * самого растворителя *. Количественная оценка процесса электролитической диссоциации дается двумя величинами: степенью диссоциации a и константой диссоциации K.

Степенью диссоциации (a) электролита называется отношение числа его молекул, распавшихся на ионы, к общему числу молекул электролита в растворе, т. е. . Так, если C=0,1 моль/л, а концентрация диссоциированной части вещества Сд=0,001 моль/л, то для растворенного вещества a=0,001/0,1=0,01, или a=1%. Степень электролитической диссоциации зависит как от природы растворенного вещества, так и от концентрации раствора, увеличиваясь с его разбавлением.

Электролиты можно разделить на две большие группы: сильные и слабые. Сильные электролиты диссоциируют практически полностью. К сильным электролитам относятся, например, H2SO4, HCl, HNO3, H3PO4, HClO3, HClO4, KOH, а также хорошо растворимые соли: NaCl, KBr, NH4NO3и др. Для слабых электролитов устанавливается равновесие между недиссоциированными молекулами и ионами. К слабым электролитам относятся плохо растворимые соли (см. таблицу растворимости), вода и большинство органических кислот (например, уксусная CH3COOH, муравьинаяHCOOH), а также неорганические соединения: H2CO3, H2S, HCN, H2SiO3, H2SO3, HNO2, HClO, HCNO, NH4OH и др.

Константа равновесия для процесса диссоциации называется константой диссоциации (K). В общем случае для электролита,диссоциирующего на два иона:

АВ А+ + В

Активность термодинамическая, величина, характеризующая стремление вещества выделиться из раствора. А. компонента жидкого или твёрдого раствора пропорциональна давлению пара этого компонента над раствором (при условии, что газовая фаза является идеальной). Коэффициент пропорциональности выбирается так, чтобы в идеальном растворе А. вещества равнялась его концентрации. Подстановка А. вместо концентраций в уравнения, определяющие условия фазовых, химических или электрохимических равновесий для идеальных растворов, делает эти уравнения применимыми к реальным растворам. Наряду с А. пользуются коэффициентом А., равным отношению А. к концентрации.

Ионы не могут выделиться из раствора порознь, а лишь в таком сочетании, при котором сохраняется электронейтральность раствора. Поэтому вводят в рассмотрение А. сильного электролита как целого. Эта величина принимается по определению равной произведению активностей ионов, на которые молекула распадается при электролитической диссоциации. За коэффициент А. сильного электролита принимают среднее геометрическое из коэффициентов активностей его ионов; коэффициенты А. ионов считаются равными отношениям активностей к концентрациям (так же, как в случае неэлектролитов).

В разбавленных растворах сильных электролитов отклонение от идеального поведения вызвано исключительно электростатическим взаимодействием ионов. На этом основано теоретическое вычисление коэффициента А. в таких растворах .

Активность компонентов раствора — эффективная (кажущаяся) концентрация компонентов с учетом различных взаимодействий между ними в растворе, то есть с учетом отклонения поведения системы от модели идеального раствора. Активность отличается от общей концентрации на некоторую величину. Активность отличается от общей концентрации на некоторую величину. Отношение активности к общей концентрации вещества в растворе называется коэффициентом активности.

Коэффициент активности служит мерой отклонения поведения раствора (или компонента раствора) от идеального. Отклонения от идеальности могут быть обусловлены различными химическими и физическими причинами — дипольные взаимодействия, поляризация, образование водородных связей, ассоциация, диссоциация, сольватация и др. Размерность и величина активности зависит от используемого способа выражения концентрации — если (активность при выражении концентрации как мольной доли) величина безразмерная, то и (для молярности и моляльности соответственно) — размерные величины, выражаются в моль/л и моль/кг.

Ионная сила раствора, параметр I, используемый для характеристики электрического поля раствора электролитов. И. с. р. I = 1/2 S miZ2i,где Ziзаряд ионов данного вида i, m — их моляльность в растворе (т. е. число грамм-ионов в 1кг растворителя). В сильно разбавленных растворах некоторые свойства электролитов, и в частности коэффициентактивности данного сильного электролита в растворе, зависят главным образом от И. с. р., что даёт возможность при приближённых расчётах пренебрегать зависимостью их от вида и концентрации содержащихся в растворе других ионов.

9. Удельная и эквивалентная электропроводность р-ов электролитов.Электрический ток есть упорядоченное перемещение заряженных частиц. Растворы электролитов обладают ионной проводимостью (являются т.н. проводниками второго рода), т.е. электропроводность растворов электролитов обусловлена перемещением ионов в электрическом поле (в отличие от электронной проводимости проводников первого рода).Величина преимущественного передвижения иона в направлении одного из электродов при прохождении тока через раствор отнесённая к градиенту потенциала 1 В/см, есть абсолютная скорость движения иона. В качестве количественной меры способности раствора электролита проводить электрический ток используют обычно удельную электропроводность χ (каппа) – величину, обратную удельному сопротивлению. Величина удельной электропроводности электролита зависит от ряда факторов: природы электролита, температуры, концентрации раствора. Удельная электропроводность растворов электролитов (в отличие от электропроводности проводников первого рода) с увеличением температуры возрастает, что вызвано увеличением скорости движения ионов за счет понижения вязкости раствора и уменьшения сольватированности ионов. С увеличением концентрации удельная электропроводность растворов сначала возрастает, достигая некоторого максимального значения, затем начинает уменьшаться. Эта зависимость очень чётко выражена для сильных электролитов и значительно хуже для слабых. Наличие максимума на кривых объясняется тем, что в разбавленных растворах сильных электролитов скорость движения ионов мало зависит от концентрации, и κ сначала растет почти прямо пропорционально числу ионов; с ростом концентрации усиливается взаимодействие ионов, что уменьшает скорость их движения. Для слабых электролитов наличие максимума на кривой обусловлено тем, что с ростом концентрации уменьшается степень диссоциации, и при достижении определенной концентрации число ионов в растворе начинает увеличиваться медленнее, чем концентрация. Для учета влияния на электрическую проводимость растворов электролитов их концентрации и взаимодействия между ионами введено понятие молярной электропроводности раствора.


ЭКВИВАЛЕНТНАЯ электропроводность - величина, характеризующая электрическую проводимость электролитов. Эквивалентная электропроводность определяется проводимостью всех ионов, образующихся из количества электролита, соотвeтствующего его химическому эквиваленту, в растворе данной концентрации. Наиболее эквивалентная электропроводность соответствует предельно разбавленному раствору. Эквивалентная электропроводность — это элек­тропроводность такого объема (φ см3) раствора, в котором содержится 1 г-экв растворенного вещества, при­чем электроды находятся на расстоянии 1 см друг от друга.

Зависимость электропроводности от концентрации раствора слабого электролита. К слабым электролитам относится большинство органических кислот и многие органические основания в водных и неводных растворах. Свойства разбавленных растворов слабых электролитов удовлетворительно описываются классической теорией электролитической диссоциации. Для не слишком разбавленных растворов слабых электролитов, а также для растворов сильных электролитов эта теория неприменима, поскольку они являются сложными системами, состоящими из ионов, недиссоциированных молекул или ионных пар, а также более крупных агрегатов. Свойства таких растворов определяются характером взаимодействий ион-ион, ион-растворитель, а также изменением свойств и структуры растворителя под влиянием растворённых частиц. Закон разбавления Оствальда — соотношение, выражающее зависимость эквивалентной электропроводности разбавленного раствора бинарного слабого электролита от концентрации раствора.

10.Законы Фарадея - основные законы электролиза. Первый закон Фарадея: масса вещества, выделившегося на электроде при прохождении электрического тока, прямо пропорциональна количеству электричества (заряду), прошедшему через электролит. Второй закон Фарадея: отношение масс различных веществ, претерпевающих химические превращения на электродах при прохождении одинаковых электрических зарядов через электролит равно отношению химических эквивалентов. установлены в 1833-1834 годах М. Фарадеем. Согласно 1-му закону, масса в-ва т, прореагировавшего в процессе электролиза, прямо пропорциональна силе тока I и времени электролиза t, т. е. кол-ву пропущенного электричества Q = It. Согласно 2-му закону, для разных электродных процессов при одинаковом кол-ве пропущенного электричества Q массы прореагировавших в-в относятся друг к другу так же, как эквиваленты химические этих в-в. Оба Фарадея закона объединяются одним ур-нием: m=( )Q , где M - мол. м. в-ва, участвующего в электролизе, z - число элементарных зарядов, соответствующее превращению одной молекулы этого в-ва, 1/F- коэф. пропорциональности, общий для всех в-в, F - Фарадея постоянная, равная 96484,56 Кл/моль.

11. Явления поляризации при электролизе.Электрохимическая поляризация. При электролизе происходит химическое превращение в результате протекания электрического тока через электролит. Этот процесс противоположен протекающему в гальванических элементах, производящих работу. При электролизе затрачивается энергия внешнего источника, который обеспечивает прохождение постоянного тока через раствор или расплав. При этом на отрицательном электроде, который принято называть катодом, разряжаются катионы, а на положительном электроде - аноде разряжаются анионы. Прохождение тока вызывает изменение электрического состояния электродов и их потенциалов. Разность между потенциалом электрода, когда через систему протекает постоянный ток, и потенциалом при равновесии и том же электролите называется поляризацией. Таким образом, протекание через электролит более или менее значительного постоянного тока делает систему неравновесной. Рассмотрим, например, электролиз водного раствора серной кислоты на платиновых электродах. Очевидно, вначале оба электрода были в одинаковом состоянии. В процессе электролиза на электродах происходит выделение водорода и кислорода. Для того, чтобы эти газы достаточно, быстро удалялись с электродов, необходимо чтобы их парциальные давления превышали атмосферное давление. Только при этом условии их удаление будет иметь характер кипения, т.е. газы будут удаляться в виде пузырьков. При парциальных давлениях водорода и кислорода меньше атмосферного их удаление будет иметь диффузионный характер и совершаться медленно. Чтобы электролиз осуществлялся в условиях поляризации, E должно превышать падение напряжения в электролите, обусловленное омическим сопротивлением (r) последнего на величину э. д. с. поляризации. В связи с этим сила тока, идущего через электролит, согласно закону Ома, составит I = (Eвн - Eп)/r. Следует отметить, что при осуществлении электролиза в промышленных масштабах возникновение поляризации на электродах приводит к увеличению расхода электрической энергии. В этом случае поляризация является вредной и для ее уменьшения в электролит добавляют вещества, способные удалять продукты электролиза.

Концентрационная поляризация. Пусть два одинаковых серебряных электрода погружены в раствор AgNO3. Очевидно, что разность потенциалов между этими электродами равна нулю. В процессе электролиза на электроды накладывается некоторая разность потенциалов. Вследствие более медленного диффузионного выравнивания концентраций в растворе по сравнению с процессами на электродах вблизи катода (где Ag+ разряжается) концентрация Ag+ будет .несколько меньше, чем в непосредственной близости от анода, где происходит растворение серебра. Таким образом, образуется концентрационный элемент, э. д. с которого направлена против поляризующего тока. Такое явление называется концентрационной поляризацией.

 

Перенапряжение - это дополнительное напряжение, необходимое для того, чтобы прцесс электролиза пошёл. Чтобы процесс электролиза протекал, внешнее напряжение должно быть по крайней мере равно ЭДС возникшего ГЭ. Это напряжение называется теоретическим потенциалом разложения. Но на практике внешнее напряжение должно быть несколько больше, чем ЭДС возникшего ГЭ и подбирается практически.

Существует таблица перенапряжений. Перенапряжением выделения водорода называется смещение или сдвиг потенциала выделения водорода в сторону более отрицательных значений при при его выделении на данном материале по сравнению с выделением его на чернёной платине.

12. ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ, разность электростатич. потенциалов между электродом и находящимся с ним в контакте электролитом. Возникновение электродного потенциала обусловлено пространств. разделением зарядов противоположного знака на границе раздела фаз иобразованием двойного электрического слоя. На границе между металлич. электродом и р-ром электролита пространств. разделение зарядов связано со след. явлениями: переносом ионов из металла в р-р в ходе установления электрохим. равновесия, кулоновской адсорбцией ионов из р-ра на пов-сть металла, смещением электронного газа за пределы положительно заряженного ионного остова кристаллич. решетки, специфич. (некулоновской) адсорбцией ионов или полярных молекул р-рителя на электроде и др. Последние два явления приводят к тому, что электродный потенциал не равен нулю даже при условиях, когда заряд пов-сти металла равен нулю. Абс. величину электродного потенциала отдельного электрода определить невозможно, поэтому измеряют всегда разность потенциалов исследуемого электрода и нек-рого стандартного электрода сравнения. Электродный потенциал равен эдс электрохим. цепи, составленной из исследуемого и стандартного электродов (диффузионный потенциал между разными электролитами, обусловленный различием скоростей движенияионов, при этом должен быть устранен). Для водных р-ров в качестве стандартного электрода обычно используют водородный электрод (Pt, Н2[0,101 МПа] | Н+[a= 1]), потенциал к-рого при давлении водорода 0,101 МПа и термодинамич. активности а ионов Н+ в р-ре, равной 1, принимают условно равным нулю (водородная шкала электродных потенциалов). При схематич. изображении цепи водородный электрод всегда записывают слева; напр., потенциал медного электрода в р-ре соли меди равен эдс цепи Pt, H2|HClCuCl2|Cu|Pt (две штриховые черты означают, что диффузионный потенциал на фанице НС1 и СuС12 устранен).
Если исследуемый электрод находится в стандартных условиях, когда активности всех ионов, определяющих электродный потенциал, равны 1, адавление газа (для газовых электродов) равно 0,101 МПа, значение электродного потенциала наз. стандартным (обозначение E°). Зависимость электродного потенциала от термодинамич. активностей ai участников электрохим. р-ции выражается Нернста уравнением(см. тетрадь).

Электродвижущая сила (ЭДС) — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура. Электродвижущая сила (эдс), физическая величина, характеризующая действие сторонних (непотенциальных) сил в источниках постоянного или переменного тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

Потенциальные силы электростатического (или стационарного) поля не могут поддерживать постоянный ток в цепи, т. к. работа этих сил на замкнутом пути равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — нагреванием проводников. Сторонние силы приводят в движение заряженные частицы внутри источников тока: генераторов, гальванических элементов, аккумуляторов и т. д. Происхождение сторонних сил может быть различным. В генераторах сторонние силы — это силы со стороны вихревого электрического поля, возникающего при изменении магнитного поля со временем, или Лоренца сила, действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах и аккумуляторах — это химические силы и т. д. Эдс определяет силу тока в цепи при заданном её сопротивлении (см. Ома закон). Измеряется эдс, как и напряжение, в вольтах.