Структура агрегативных систем (А-систем)

Тема 4.

Агрегативные системы.

Агрегатное описание систем

 

Агрегат - унифицированная схема, получаемая наложением дополнительных ограничений на множества состояний, сигналов и сообщений и на операторы перехода а так же выходов.

t Î T - моменты времени; x Î X - входные сигналы; u Î U - управляющие сигналы; y Î Y - выходные сигналы; с Î С - состояния, x(t), u(t), y(t), с(t) - функции времени.

Агрегат - объект определенный множествами T, X, U, Y, Z и операторами H и G реализующими функции с(t) и y(t). Структура операторов H и G является определяющей для понятия агрегата.

Вводится пространство параметров агрегата b=(b1, b2, ...,bn) Î B.

 

Оператор выходов G реализуется как совокупность операторов G` и G``. Оператор G` выбирает очередные моменты выдачи выходных сигналов, а оператор G`` - содержание сигналов.

у=G``{t, с(t),u(t),b}.

 

В общем случае оператор G`` является случайным оператором, т.е. t, с(t), u(t) и b ставится в соответствие множество y с функцией распределения G``. Оператор G` определяет момент выдачи следующего выходного сигнала.

 

Операторы переходов агрегата.

Рассмотрим состояние агрегата с(t) и с(t+0).

Оператор V реализуется в моменты времени tn , поступления в агрегат сигналов xn(t). Оператор V1 описывает изменение состояний агрегата между моментами поступления сигналов.

с(t’n + 0) = V{ t’n, с(t’n), x(t’n), b}.

с(t) = V1(t, tn, с(t+0),b}.

 

Особенность описания некоторых реальных систем приводит к так называемым агрегатам с обрывающимся процессом функционирования. Для этих агрегатов характерно наличие переменной, соответствующей времени, оставшемуся до прекращения функционирования агрегата.

 

Все процессы функционирования реальных сложных систем по существу носят случайный характер, по этому в моменты поступления входных сигналов происходит регенерация случайного процесса. То есть развитие процессов в таких системах после поступления входных сигналов не зависит от предыстории.

 

Автономный агрегат - агрегат который не может воспринимать входных и управляющих сигналов.

Неавтономный агрегат - общий случай.

 

Частные случаи агрегата:

Кусочно-марковский агрегат - агрегат процессы в котором являются обрывающими марковскими процессами. Любой агрегат можно свести к марковскому.

Кусочно-непрерывный агрегат - в промежутках между подачей сигналов функционирует как автономный агрегат.

Кусочно-линейный агрегат. dсv(t)/dt = F(v)v).

 

Представление реальных систем в виде агрегатов неоднозначно, вследствие неоднозначности выбора фазовых переменных.

Агрегативный подход к техническим системам, во­обще говоря, восходит, с одной стороны, к представлению системы как «черного ящика», а с другой – к пред­ставлению траектории в n-мерном пространстве при слу­чайных воздействиях. В явном или неявном виде пред­полагается, что есть возможность описать техническую систему системой уравнений и дать ее решение. Это особен­но необходимо при решении задач управления и для частных случаев выполнимо, причем вводятся упро­щения и допущения, и система рассматривается как слож­ная и вероятностная.

Структура агрегативных систем (А-систем)

Проблема: создание единой схемы исследования всех типов систем, а также задачи структурного и параметрического синтеза и анализа.

Требования:

1) эта схема должна иметь динамический хар-р;

2) должна иметь связь с внешней средой;

3) должна учитывать влияние случайных факторов (т.е. в общем случае д. быть стохастической)

Такой абстрактной схемой явл-ся агрегат.

Опишем нашу систему:

Т – мн-во действит. чисел, кот. определяют нек. момент времени t

Х – мн-во входных сигналов х (t)

Y – мн-во выходных сигналов у(t)

U – мн-во сигналов управления u(t)

Z – мн-во состояний z(t)

Агрегат – это объект, определяемый множествами X, Y, U, Z, T:

и случ. операторами переходов H и выходов G.

 

А = {X, Y, U, Z, T, H, G};

 

Случ. операторы H и G определяют ф-и z(t) и y(t). Именно случ. хар-р операторов переходов H и выходов G выделяет его из мн-ва других определений и описаний систем.

При рассмотрении агрегатов часто упоминают в качестве частных решений задач: Марковские и кусочно-линейные агрегаты, где исп. аппарат МСП. Понятие «Агрегат» было предложено Киевской школой.

 

 

Структура любой сложной системы:

Пусть наша сложная система состоит из ограниченного числа агрегатов (рис.2.)

С1, С4 – входные полюса;

С1, С2, С6 – управляющие полюса;

С3, С7 – выходные полюса.

Основополагающим понятием является «полюс». Полюс – это связь с внеш. средой.

Исследование агрегативных систем как правило сводят к исследованию частных Марковских агрегатов.