Исходный уровень знаний и навыков

Студент должен знать:

1 Характеристику уровней структурной организации белковой молекулы (первичная, вторичная, третичная, четвертичная структуры).

2 Незаменимые микроэлементы.

3 Витамины B1, B2, B3, B6, PP.

4 Строение коферментов NAD+, NADP+.

5 Понятия: коагуляция, порог коагуляции, коллоидная защита

6 Принципы и методы измерения скорости химических реакций.

 

Студент должен уметь:

1 Проводить качественные реакции на белки и пептиды.

 

Структура занятия

Теоретическая часть

1.1 Понятие о ферментах. История энзимологии. Особенности ферментативного катализа. Строение ферментов. Доказательства белковой природы ферментов.

1.2 Характеристика уровней структурной организации белковой молекулы (первичная, вторичная, третичная, четвертичная структуры) и связей, удерживающих ее. Высаливание, денатурация, причины, признаки и механизм.

1.3 Кофакторы ферментов: ионы металлов и коферменты. Участие витаминов в построении коферментов. Роль микроэлементов в ферментативном катализе (Fe, Cu, Co, I, Mg, Zn, Mn, F, Se).

1.4 Структурно-функциональная организация ферментов: активный (субстратный) центр, каталитический, аллостерический участки.

1.5 Локализация ферментов в клетке (клеточная мембрана, цитоплазма, митохондрии, ядро, лизосома, рибосомы). Маркерныеферменты. Органно­специфические ферменты. Выделение и очисткаферментов.

1.6 Качественное обнаружение иколичественноеопределение.Единицы измерения количества и активности ферментов.

1.7 Номенклатура и классификация ферментов.

Практическая часть

2.1 Решение задач.

2.2 Лабораторные работы.

2.3 Проведение контроля конечного уровня знаний.

Задачи

1. Напишите формулу пептида Глу-Тир-Про-Гис-Сер. Какие из перечисленных цветных реакций будут положительными с данным пептидом:

а) биуретовая, б) Фоля, в) ксантопротеиновая, г) Милона?

2. О чем свидетельствуют цветные реакции на белки:

а) о наличии белка в биологической жидкости;

б) о первичной структуре белка;

в) о конформации белка;

г) о наличии некоторых аминокислот в структуре белка;

д) о функции белка;

е) о наличии числа уровней структурной организации?

3. Зимогены превращаются в ферменты путем реакций:

а) аденилирования; б) фосфорилирования; в) метилирования; г) ограниченного протеолиза?

4. Активный центр фермента:

а) содержит каталитические и вспомогательные аминокислоты;

б) создает благоприятное окружение для взаимодействия фермента и субстрата;

в) является основным в формировании свойств третичной структуры фермента;

г) может содержать дополнительные сайты небелкового строения, необходимые для каталитического действия;

д) обязательно содержит SH-группы?

5. Простетическая группа фермента представляет собой:

а) альфа-спираль молекулы фермента; б) апофермент; г) небелковую часть фермента; д) холофермент; е) аллостерический центр фермента?

6. Функция якорного участка фермента:

а) превращение субстрата; б) связывание субстрата; г) временное связывание регулятора с последующим отщеплением; д) поддержание конформации активного центра?

7. Катал – это единица, отражающая:

а) активность фермента; б) константу Михаэлиса-Ментен; г) концентрацию фермента; д) концентрацию ингибитора; е) коэффициент молекулярного погашения?

8. Активность фермента, выраженная в каталах, имеет размерность:

а) моль/мин; б) моль/с; в) мкмоль/с; г) мкмоль/мин; д) моль/час?

9. Ферменты разделяются на 6 классов в соответствии с:

а) типом катализируемой реакции; б) структурой; в) субстратной специфичностью; г) активностью; д) органной специфичностью?

Лабораторные работы

Лабораторная работа № 1.Цветные реакции на белки и аминокислоты

Биуретовая реакция.

Принцип метода. см. в занятии «Строение и функции белков».

ВНИМАНИЕ! Соблюдать меры безопасности при работе с гидроксидом натрия.

Ход работы. В три пробирки наливают по 5 капель растворов: в 1-ю – яичного белка, во 2-ю – желатина, в 3-ю – миозина. В каждую пробирку добавляют по 5 капель 10 %-го раствора гидроксида натрия и по 1 капле 1 %-го раствора медного купороса. Во всех пробирках наблюдают устойчивое сине-фиолетовое окрашивание.

Выводы по результатам работы.

________________________________________________________________________________________________________________________________________________________________________________________________

 

Нингидриновая реакция.

Принцип метода. Основан на образовании димера нингидрина и азота аминогруппы сине-фиолетового цвета (комплекс Руэмана ‑ см. уравнение).

Ход работы. К 5 каплям раствора белка прибавить 5 капель раствора нингидрина и прокипятить 1–2 мин. Появляется сине-фиолетовое окрашивание.

 

Выводы по результатам работы.

________________________________________________________________________________________________________________________________________________________________________________________________

 

 

Ксантопротеиновая реакция (Мульдера).

Принцип метода. Основан на образовании нитросоединений ароматических и гетероциклических аминокислот, окрашенных в ярко-желтый цвет (см. уравнение).

ВНИМАНИЕ! Соблюдать меры безопасности при работе с концентрированной азотной кислотой.

 

Ход работы. В три пробирки наливают по 5 капель растворов: в 1-ю – яичного белка, во 2-ю – желатина, в 3-ю – миозина. В каждую пробирку добавляют по 3 капли концентрированной азотной кислоты и осторожно кипятят. В первой пробирке образуется осадок желтого цвета, а во второй – слабое окрашивание, т. к. желатин не содержит циклических аминокислот. В 3‑й пробирке образуется осадок белого цвета, переходящий в желтый цвет. Пробирки охлаждают и добавляют в каждую по 10–15 капель 20 %-го едкого натра до изменения окраски растворов вследствие образования натриевой соли динитротирозина.

Выводы по результатам работы.

________________________________________________________________________________________________________________________________________________________________________________________________

 

 

Реакция на тирозин (Миллона).

Принцип метода. Основан на образовании осадка ртутной соли динитротирозина кроваво-красного цвета (см. уравнение).

 

ВНИМАНИЕ! Соблюдать меры безопасности при работе с реактивом Миллона (содержит Hg и HNO3).

Ход работы. В три пробирки наливают по 5 капель растворов: в 1-ю – яичного белка, во 2-ю – желатина, в 3-ю – миозина. В каждую пробирку добавляют по 3 капли реактива Миллона (раствор ртути в азотной кислоте) и осторожно нагревают. Отмечают изменение цвета в пробирках, характеризующее наличие в указанных белках тирозина.

Выводы по результатам работы.

________________________________________________________________________________________________________________________________________________________________________________________________

 

Реакция Фоля (на аминокислоты, содержащие слабосвязанную серу).

Принцип метода. Основан на щелочном гидролизе сульфгидрильных групп SH белка с последующим отщеплении серы в виде сульфида свинца (PbS) черно-бурого цвета (см. уравнение).

ВНИМАНИЕ! Соблюдать меры безопасности при работе с реактивом Фоля (содержит NaOH и Na2PbO2).

 

Ход работы. В три пробирки наливают по 5 капель растворов: в 1-ю – яичного белка, во 2-ю – желатина, в 3-ю – миозина. В каждую пробирку добавляют по 5 капель реактива Фоля. Затем интенсивно кипятят и дают постоять 1–2 мин. При этом в 1-й и в 3-й пробирках образуется черный или бурый осадок сульфида свинца. Желатин осадка не образует, т. к. в нем нет серосодержащих аминокислот.

Выводы по результатам работы.

________________________________________________________________________________________________________________________________________________________________________________________________

 

 

Лабораторная работа № 2.Реакции осаждения белков

Осаждение белков при кипячении.

ВНИМАНИЕ! Соблюдать меры безопасности при работе с нагреванием пробирок.

 

Ход работы. В 5 пробирок наливают по 5 капель раствора белка. Первую пробирку нагреть до кипения. Жидкость мутнеет, т. к. разрушаются водные оболочки вокруг молекулы белка, и происходит укрупнение его частиц. Мицеллы белка несут заряд и удерживаются во взвешенном состоянии.

Во 2-й пробирке нагреть раствор до кипения и добавить 2 капли 1 %-го раствора уксусной кислоты до слабого подкисления. При отстаивании выпадает осадок белка. Частицы белка теряют заряд и приближаются к изоэлектрическому состоянию.

В 3-ю пробирку добавить 5 капель уксусной кислоты для сильнокислой реакции среды. При кипячении жидкости осадка не образуется, поскольку белковые мицеллы перезаряжаются и несут положительный заряд, что повышает их устойчивость.

В 4-ю пробирку налить 5 капель раствора уксусной кислоты, 2 капли насыщенного раствора хлористого натрия и нагреть. Выпадает белый хлопьевидный осадок, т. е. частицы белка теряют заряд.

В 5-ю пробирку добавить 2 капли раствора гидроксида натрия. При кипячении осадок не образуется, т. к. в щелочной среде отрицательный заряд на частицах белка увеличивается.

Выводы по результатам работы.

________________________________________________________________________________________________________________________________________________________________________________________________

 

 

Осаждение белков концентрированными минеральными кислотами.

ВНИМАНИЕ! Соблюдать меры безопасности при работе с концентрированными азотной и серной кислотами.

Ход работы. В 2 пробирки наливают по 10 капель концентрированных кислот: азотной и серной. Наклонив пробирки под углом 45 градусов, осторожно по стенке пробирки приливают равный объем раствора белка так, чтобы обе жидкости не смешивались. На границе двух жидкостей образуется осадок в виде небольшого белого кольца. При добавлении избытка азотной кислоты осадок не исчезает, а при добавлении серной кислоты осадок растворяется.

Выводы по результатам работы.

________________________________________________________________________________________________________________________________________________________________________________________________

 

 

Осаждение белков органическими растворителями.

Ход работы. В 2 пробирки вносят по 5 капель раствора белка и прибавляют по 15–20 капель этилового спирта и ацетона.

Выводы по результатам работы.

________________________________________________________________________________________________________________________________________________________________________________________________

 

 

Осаждение белков органическими кислотами.

ВНИМАНИЕ! Соблюдать меры безопасности при работе с трихлоруксусной кислотой.

Ход работы. В две пробирки наливают по 5 капель раствора белка и добавляют по 2 капли раствора ТХУ (трихлоруксусной кислоты) в одну и 2 капли сульфосалициловой – в другую. Следят за изменением растворов.

Выводы по результатам работы.

________________________________________________________________________________________________________________________________________________________________________________________________

_

_

_

Лабораторная работа № 3.Разделение альбуминов и глобулинов методом высаливания (УИРС)

Принцип метода. Основан на обратимой реакции осаждения белков из растворов с помощью высоких концентраций нейтральных солей (NaCl, NH4Cl, MgSO4 и др.).

Ход работы. К 1 мл неразведенного яичного белка добавляют 1 мл насыщенного раствора сульфата аммония и перемешивают. Получается полунасыщенный раствор сульфата аммония, в котором выпадает осадок яичного глобулина. Через 5 мин осадок отфильтровывают, в фильтрате остается яичный альбумин. Для высаливания альбуминов к фильтрату добавляют порошок сульфата аммония до полного насыщения, т. е. пока новая порция порошка остается нерастворенной. Выпавший осадок альбумина отфильтровывают. С фильтратом проделывают биуретовую реакцию. Отрицательная реакция указывает на отсутствие белка.

Выводы по результатам работы.

________________________________________________________________________________________________________________________________________________________________________________________________

_

_

Рекомендуемая литература

Основная

1 Кухта, В.К и др. Биологическая химия: учебник / В.К. Кухта, Т.С. Морозкина, Э.И. Олецкий, А.Д. Таганович; под ред. А.Д. Тагановича. – Минск: Асар, М.: Издательство БИНОМ, 2008. – С. 45-46, 54-60.

2 Биохимия: Учебник для вузов / Под ред. Е.С. Северина. – 4-е изд., испр. – М.: ГЭОТАР-Медиа, 2006. – С. 9-73, 75-80, 83-92.

3 Филиппович, Ю. Б. Основы биохимии. – 4-е изд. – М.: Агар, 1999. – С. 49-78, 95-105.

4 Николаев, А.Я. Биологическая химия. М.: Медицинское информационное агентство, 2004. – С. 61-63, 68-78.

5 Марри Р. и др. Биохимия человека: в 2-х т.: Пер. с англ., М.: Мир, 2004. – Т.1: С. 47-51, 63-66, 79-81.

Дополнительная

6 Березов, Т. Т. Биологическая химия / Т.Т. Березов, Б.Ф. Коровкин. – М.: Медицина, 1998. – С. 114-143.

7 Ленинджер, А. Л. Основы биохимии. М.: Мир, 1985. Т. 1. С. 226–302.

8 Тюкавкина Н. А., Бауков Ю. И. Биоорганическая химия, М.: Медицина, 1991. С. 313–376.

9 Албертс Б. и др. Молекулярная биология клетки. М.: Мир, 1994. Т. 1. С. 113–171.

 

 

Занятие 4

Ферменты-2. Механизм действия ферментов

Цель занятия: закрепить знания по структуре ферментов, сформировать представления о механизме действия ферментов. Научиться выполнять качественные реакции на активность некоторых гидролитических ферментов.