Существуетфункция состояния- энтропияS, которая обладает следующим свойством:, (4.1) где знак равенства относится к обратимым процессам, а знак больше - к необратимым.

Энергия изолированной системы постоянна. В неизолированной системе энергия может изменяться за счет: а) совершения работы над окружающей средой; б) теплообмена с окружающей средой.

Для описания этих изменений вводят функцию состояния - внутреннюю энергию U и две функции перехода - теплоту Q и работу A. Математическая формулировка первого закона:

dU = Q - A (дифференциальная форма) (2.1)

U = Q - A (интегральная форма) (2.2)

Буква в уравнении (2.1) отражает тот факт, что Q и A - функции перехода и их бесконечно малое изменение не является полным дифференциалом.

В уравнениях (2.1) и (2.2) знаки теплоты и работы выбраны следующим образом. Теплота считается положительной, если она передается системе. Напротив, работа считается положительной, если она совершается системой над окружающей средой.

Второй закон термодинамики устанавливает критерии необратимости термодинамических процессов. Известно много формулировок второго закона, которые эквивалентны друг другу. Мы приведем здесь только одну формулировку, связанную с энтропией.

Существуетфункция состояния- энтропияS, которая обладает следующим свойством:, (4.1) где знак равенства относится к обратимым процессам, а знак больше - к необратимым.

Для изолированных систем второй закон утверждает: dS і 0, (4.2) т.е. энтропия изолированных систем в необратимых процессах может только возрастать, а в состоянии термодинамического равновесия она достигает максимума (dS = 0,
d 2S < 0).

Неравенство (4.1) называют неравенством Клаузиуса. Поскольку энтропия - функция состояния, ее изменение в любом циклическом процессе равно 0, поэтому для циклических процессов неравенство Клаузиуса имеет вид:

, (4.3)

где знак равенства ставится, если весь цикл полностью обратим.

 

5. Скорость химических реакций – это кол-во элементарных актов взаимодействия в единицу времени в единице пространства.

Раздел химии, который изучает скорость химических реакций и влияние на нее различных термодинамических параметров (Т,Р,с)

Скорость химической реакции равна изменению концентрации в единицу.

В гомогенной системе для реакции А + В = АВ ʋ̅ = - = =

ʋ̅ = ± , ʋ̅1 = = - ʋ̅2 = = -

для определения истинной скорости ʋ = ± dτ à 0

В гетерогенной системе: С(т) + О2(г) = СО2(г)

ʋ̅ = ± Cs – поверхностная концентрация.

Скорость химических реакций зависит от: 1) от химической природы реагирующих веществ 2) концентрации компонентов 3) температуры системы 4) присутствия катализатора 5) внешних воздействий и пр.

Закон действия масс: при постоянной t ʋ химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных стехиометрическим коэффициентам в уравнениях реакции.

Для реакций типа А + 2В à АВ2

Кинетическое уравнение ʋ = к [CA]2 [CB]2

Физический смысл параметра константы скорости химической реакции ʋ = к [CA]a [CB]b если CA = CB = 1, значение к=ʋ

Константа скорости химических реакций равна скорости химической реакции при концентрации реагирующих веществ, равных 1.

к≠f(C), k = f(T)

Правило Вант-Гоффа: скорость химической реакции при повышении температуры на 10⁰ возрастает от 2х до 4х раз. = = ϒ = ϒ

Физический смысл ϒ - Увеличение или уменьшение сопротивления при повышении или понижении температуры

Энергия активации – энергия, необходимая для образования переходного комплекса.

А В А….В А --- В

I + I à : : à = 2АВ

А В А....В А --- В

Переходное состояние (актив. комплекс) – состояние, при котором связи в исходных веществах еще не разорваны, но ослаблены, а в продуктах реакции еще наметились, но не окрепли.

Уравнение Аррениуса: k = A e( - EA/RT), к – константа скорости химич. реакции

А – множитель; е = 2,7 , R – газовая постоянная = 8,31 Дж/моль К

ЕА – энергия активации (для хим. Реакций ЕА от 40 до 400 кДж/ моль)

Ln k = lnA - = ln A - y = a – bx; b = ln k = f ( ) tgϕ = Ea = tg ϕ R

A = pz z – число столкновений частиц в секунду; p – отношение числа благоприятных ориентаций молекул к общему числу.

 

 

6. В гомогенной системе для реакции А + В = АВ ʋ̅ = - = =

ʋ̅ = ± , ʋ̅1 = = - ʋ̅2 = = -

для определения истинной скорости ʋ = ± dτ à 0

В гетерогенной системе: С(т) + О2(г) = СО2(г)

ʋ̅ = ± Cs – поверхностная концентрация.

Катализаторы и каталитические системы.

Катализаторы – вещ-ва, изменяющие скорость химических реакций.

1. Увеличивают константу скорости хим. Реакции

2. Ускоряют достижение равновесия

3. Не влияют на выход продуктов реакции.

Виды катализа: гомогенный: вещ-ва и катализатор – одна фаза

Гетерогенный: вещ-ва и катализатор в разных фазах.

Реакция без катализатора: А + В = АВ; реакция с катализатором: 1. А + к ( 1 ) (реакция с низким уровнем энергии активации) 2. АК + В = АВ + к ( 2 ) (реакция энергии активации невелика)

Сумма энергии активации обеих реакций меньше, чем энергия активации главной реакции.

Гомогенный катализ: окисление SO2 в SO3 (катализатор NO)

NO + 1/2O2 = NO2 SO2 + NO2 = SO3 + NO3

Гетерогенный катализ – его эффективность зависит от площади поверхности катализа.

А) влияние поверхности: процесс разложения H2O2 à H2O + 1/2О2

Полированная: - нет разложения H2O2 , шероховатая – заметное выделение О2 , порошок – энергичное выделение О2, коллоидная – разложение со взрывом.

Шероховатая поверхность катализатора имеет шероховатую поверхности и больше активных центров, на которых и протекает химическая реакция.

Реагирующие вещества находятся в большом объеме, сорбированных на поверхности, концентрация резко увеличивается.

Т.к. скорость химической реакции пропорциональна концентрации реагирующих веществ, то процесс резко ускоряется.

7. Закон действия масс: при постоянной t ʋ химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных стехиометрическим коэффициентам в уравнениях реакции.

Правило Вант-Гоффа: скорость химической реакции при повышении температуры на 10⁰ возрастает от 2х до 4х раз. (эту величину называют температурным коэффициентом реакции). = = ϒ = ϒ ϒ – температурный коэффициент скорости химической реакции.

Зависимость скорости реакции от присутствия катализатора: Катализаторы - это вещества, которые повышают скорость химической реакции. Увеличивают константу скорости хим. Реакции

1. Ускоряют достижение равновесия

2. Не влияют на выход продуктов реакции.

Влияние концентрации: закон действия масс . Для реакций типа А + 2В à АВ2

Кинетическое уравнение ʋ = к [CA]2 [CB]2

Зависимость скорости реакции от температуры определяется правилом Вант – Гоффа.

От давления: N2 + 3H2 = 2NH3. При увеличении давления в системе в 3 раза: ʋ2 = k [3 (CN2)] * [3 (CH2)]3= 81k [ (CN2)] * [ (CH2)]3, скорость реакции возрастает в 81 раз. Увеличением давления можно ускорить хим.реакцию, если в системе есть хотя бы одно газообразное вещество.

 

8.Скорость химической реакции — изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства. Является ключевым понятием химической кинетики. Скорость химической реакции — величина всегда положительная, поэтому, если она определяется по исходному веществу (концентрация которого убывает в процессе реакции), то полученное значение домножается на −1.

Например для реакции:

выражение для скорости будет выглядеть так:

.

 

 

Скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведенным в некоторые степени.

Для элементарных реакций показатель степени при значении концентрации каждого вещества часто равен его стехиометрическому коэффициенту, для сложных реакций это правило не соблюдается. Кроме концентрации на скорость химической реакции оказывают влияние следующие факторы:

§ природа реагирующих веществ,

§ наличие катализатора,

§ температура (правило Вант-Гоффа),

§ давление,

§ площадь поверхности реагирующих веществ.

§ Состояние системы, при котором Vпрям. = Vобр. называется химическим равновесием.Равенство скоростей прямой и обратной реакций является кинетическим условием химического равновесия. Термодинамическим условием химического равновесия является условие ∆G=0

9.Обратимые реакции — химические реакции, протекающие одновременно в двух противоположных направлениях (прямом и обратном), например:

3H2 + N2 ⇌ 2NH3.

Направление обратимых реакций зависит от концентраций веществ — участников реакции. Так в приведённой реакции, при малой концентрацииаммиака в газовой смеси и больших концентрациях азота и водорода происходит образование аммиака; напротив, при большой концентрации аммиака он разлагается, реакция идёт в обратном направлении. По завершении обратимой реакции, т. е. при достижении химического равновесия, система содержит как исходные вещества, так и продукты реакции.

Простая (одностадийная) обратимая реакция состоит из двух происходящих одновременно элементарных реакций, которые отличаются одна от другой лишь направлением химического превращения. Направление доступной непосредственному наблюдению итоговой реакции определяется тем, какая из этих взаимно-обратных реакций имеет большую скорость. Например, простая реакция

N2O4 ⇌ 2NO2

складывается из элементарных реакций

N2O4 ⇌ 2NO2 и 2NO2 ⇌ N2O4.

Для обратимости сложной (многостадийной) реакции, например уже упоминавшейся реакции синтеза аммиака, необходимо, чтобы были обратимы все составляющие её стадии.

Необратимые реакции — реакции, при которых взятые вещества нацело превращаются в продукты реакции, не реагирующие между собой при данных условиях, например, разложение взрывчатых веществ, горение углеводородов, образование малодиссоциирующих соединений, выпадение осадка, образование газообразных веществ.

Ba(ClO2)2 + H2SO4 → 2HClO2 + BaSO4

NaHCO3 + CH3COOH → CH3COONa + H2O + CO2

Однако надо понимать, что при изменении условий протекания реакции, теоретически возможно сместить равновесие любой реакции.

Химическое равновесие — состояние химической системы, в котором обратимо протекает одна или несколько химических реакций, причёмскорости в каждой паре прямая-обратная реакция равны между собой. Для системы, находящейся в химическом равновесии, концентрацииреагентов, температура и другие параметры системы не изменяются со временем.[1]

А2 + В2 ⇄ 2AB

В состоянии равновесия скорости прямой и обратной реакции становятся равными.

Конста́нта равнове́сия — величина, определяющая для данной химической реакции соотношение между термодинамическими активностями(либо, в зависимости от условий протекания реакции, парциальными давлениями, концентрациями или фугитивностями) исходных веществ и продуктов в состоянии химического равновесия (в соответствии с законом действующих масс). Зная константу равновесия реакции, можно рассчитать равновесный состав реагирующей смеси, предельный выход продуктов, определить направление протекания реакции. Расчётные методы определения константы равновесия реакции обычно сводятся к вычислению тем или иным способом стандартного изменения энергии Гиббса в ходе реакции (ΔG0), а затем использованию формулы:

Принцип Ле Шателье — Брауна (1884 г.) — если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация), то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.

Влияние температуры

Влияние температуры зависит от знака теплового эффекта реакции. При повышении температуры химическое равновесие смещается в направлении эндотермической реакции, при понижении температуры — в направлении экзотермической реакции. В общем же случае при изменении температуры химическое равновесие смещается в сторону процесса, знак изменения энтропии в котором совпадает со знаком изменения температуры. Зависимость константы равновесия от температуры в конденсированных системах описывается уравнением изобары Вант-Гоффа:

в системах с газовой фазой — уравнением изохоры Вант-Гоффа

В небольшом диапазоне температур в конденсированных системах связь константы равновесия с температурой выражается следующим уравнением:

Например, в реакции синтеза аммиака

N2 + 3H2 ⇄ 2NH3 + Q

тепловой эффект в стандартных условиях составляет +92 кДж/моль, реакция экзотермическая, поэтому повышение температуры приводит к смещению равновесия в сторону исходных веществ и уменьшению выхода продукта.

 

Влияние давления

Давление существенно влияет на положение равновесия в реакциях с участием газообразных веществ, сопровождающихся изменением объёма за счёт изменения количества вещества при переходе от исходных веществ к продуктам:

При повышении давления равновесие сдвигается в направлении, в котором уменьшается суммарное количество молей газов и наоборот.

В реакции синтеза аммиака количество газов уменьшается вдвое: N2 + 3H2 ↔ 2NH3

Значит, при повышении давления равновесие смещается в сторону образования NH3, о чем свидетельствуют следующие данные для реакции синтеза аммиака при 400 °C:

Влияние концентрации

Влияние концентрации на состояние равновесия подчиняется следующим правилам:

§ При повышении концентрации одного из исходных веществ равновесие сдвигается в направлении образования продуктов реакции;

§ При повышении концентрации одного из продуктов реакции равновесие сдвигается в направлении образования исходных веществ.

 

10. Химический элемент - это вид атомов, характеризующийся определенными зарядами ядер и строением электронных оболочек. В настоящее время известно 110 элементов: 89 из них найдены в природе (на Земле), остальные получены искусственным путем. Атомы существуют в свободном состоянии, в соединениях с атомами того же или других элементов, образуя молекулы. Способность атомов вступать во взаимодействие с другими атомами и образовывать химические соединения определяется его строением. Атомы состоят из положительно заряженного ядра и отрицательно заряженных электронов, движущихся вокруг него, образуя электронейтральную систему, которая подчиняется законам, характерным для микросистем.

 

Атомное ядро - центральная часть атома, состоящая из Z протонов и N нейтронов, в которой сосредоточена основная масса атомов.

 

Заряд ядра - положительный, по величине равен количеству протонов в ядре или электронов в нейтральном атоме и совпадает с порядковым номером элемента в периодической системе. Сумма протонов и нейтронов атомного ядра называется массовым числом A =Z + N.

 

Изотопы - химические элементы с одинаковыми зарядами ядер, но различными массовыми числами за счет разного числа нейтронов в ядре.

 

ЯДРО АТОМА

 

Ядро атома состоит из протонов и нейтронов (общее название - нуклоны). Число протонов в ядре атома элемента строго определено - равно порядковому номеру элемента в периодической системе - Z. Число нейтронов в ядре атомов одного и того же элемента может быть различным - A - Z (где А - относительная атомная масса элемента; Z - порядковый номер).

Заряд ядра атома определяется числом протонов. Масса ядра определяется суммой протонов и нейтронов.

 

ИЗОТОПЫ

 

Изотопы - разновидности атомов определенного химического элемента, имеющие одинаковый атомный номер, но разные массовые числа. Обладают ядрами с одинаковым числом протонов и различным числом нейтронов, имеют одинаковое строение электронных оболочек и занимают одно и то же место в периодической системе химических элементов.

Относительные атомные массы элементов, приводимые в периодической системе - есть средние массовые числа природных смесей изотопов. Поэтому они и отличаются от целочисленных значений.

Квантовые числа– целые или дробные числа, определяющие возможные значения физических величин, характеризующих квантовую систему (молекулу, атом, атомное ядро, элементарную частицу). Квантовые числа отражают дискретность (квантованность) физических величин, характеризующих микросистему. Набор квантовых чисел, исчерпывающе описывающих микросистему, называют полным. Так состояние электрона в атоме водорода определяется четырьмя квантовыми числами: главным квантовым числом n (может принимать значения 1, 2, 3, …), определяющим энергию Еn электрона (Еn = -13.6/n2 эВ); орбитальным квантовым числом l = 0, 1, 2, …, n – 1, определяющим величину L орбитального момента количества движения электрона (L = [l(l + 1)]1/2); магнитным квантовым числом m < ± l , определяющим направление вектора орбитального момента; и квантовым числом ms = ± 1/2, определяющим направление вектора спина электрона.

Принцип Паули (запрет): у атомов, имеющих больше одного электрна не может быть двух электронов с одинаковыми значениями всех четырех квантовых чисел. Или так: на одной орбитали могут находится только два электрона, причем с противоположенными спинами.

Принцип минимума энергии: последовательное заполенние электронов в атоме должно отвечать как минимому энергии самого электрона, так и минимому энерги атома в целом. Или так: минимум энергии соответствует максимому устойчивости. Заполение идет в соответсвии с уравнением энергии орбитали: ns<(n-1)d» (n-2)f<np. На внешнем уровне не может быть более 8 электронов.

Правило Клечковского: сначала заполняются те подуровни, сумма n+l которых наименьшая. Если для двух подуровней сумма n+l равна, то сначала заполняется подуровень с меньшим n.

Правило Хунда (Гунда) определяет порядок заполнения орбиталей определённого подслоя и формулируется следующим образом: суммарное значение спинового квантового числа электронов данного подслоя должно быть максимальным.

Это означает, что в каждой из орбиталей подслоя заполняется сначала один электрон, а только после исчерпания незаполненных орбиталей на эту орбиталь добавляется второй электрон. При этом на одной орбитали находятся два электрона с полуцелыми спинами противоположного знака, которые спариваются (образуют двухэлектронное облако) и, в результате, суммарный спин орбитали становится равным нулю.

Другая формулировка: Ниже по энергии лежит тот атомный терм, для которого выполняются два условия.

1. Мультиплетность максимальна

2. При совпадении мультиплетностей суммарный орбитальный момент L максимален.

Разберём это правило на примере заполнения орбиталей p-подуровня p-элементов второго периода (то есть от бора до неона (в приведённой ниже схеме горизонтальными чёрточками обозначены орбитали, вертикальными стрелками — электроны, причём направление стрелки обозначает ориентацию спина):

Как видно, сначала появляется один электрон на 2px-орбитали, затем один электрон на 2py-орбитали, после этого один электрон на 2pz-орбитали, затем появляются парные электроны на 2px-, 2py- и 2pz-орбиталях.

 

 

11. Из квантово-механической теории следует, что с увеличением главного квантового числа (n) изменяются число и характер электронных орбиталей в пределах данного электронного слоя. Количество орбиталей для каждого значения (n) равно квадрату главного квантового числа (n2).

Второе квантовое число l, описывающее форму электронного облака, называется орбитальным квантовым числом.

При данном главном квантовом числе (n) орбитальное квантовое число (l) может принимать любые целочисленные значения от 0 до n-1. Соответствующие орбитали обозначаются строчными буквами латинского алфавита: s (l = 0), p (l = 1), d (l = 2), f (l = 3). Орбитальное квантовое число отображает энергию электрона на подуровне.

Электроны с различными орбитальными квантовыми числами несколько отличаются друг от друга: их энергия тем выше, чем больше число l. Число возможных подуровней в каждом энергетическом уровне совпадает с порядковым номером электронного слоя, но фактически ни один энергетический уровень не содержит больше 4-х подуровней.

Это справедливо для стационарного состояния атомов всех элементов. Так 1-му энергетическому уровню соответствует s-подуровень; 2-му уровню - 2 подуровня: s и p; 3-му уровню - 3 подуровня: s, p и d; 4-му и следующим уровням - 4 подуровня: s, p, d и f.

Ориентацию орбиталей в пространстве определяет третье квантовое число, называемое магнитным квантовым числом и обозначаемое m. При данном орбитальном квантовом числе (l) магнитное квантовое число (m) может принимать любые целочисленные значения от -l до +l, в том числе нулевое значение. Оно определяет число орбиталей в одном и том же электронном слое: одна s-орбиталь (m = 0), 3 p-орбитали (m равно -1, 0, +1), 5 d-орбиталей (m равно -3, -2, -1, 0, +1, +2, +3).

Орбитали с различными магнитными квантовыми числами, но с одинаковым главным и орбитальным квантовыми числами характеризуются одной и той же энергией. Магнитное квантовое число есть вектор, следовательно, ему соответствует не только определенное числовое значение, но и определенное направление, что выражается в знаках "+" и "-".

Четвертое квантовое число, называемое спином и обозначаемое ms, раньше связывали с вращением электрона вокруг своей оси, но теперь ему не придают какого-либо наглядного образа и считают чисто квантово-механической величиной. Спин электрона может иметь 2 значения: +1/2 и -1/2.

Русский ученый В. М. Ключевский установил, что энергия электрона возрастает по мере увеличения суммы главного и орбитального квантовых чисел (n + l). В соответствии с правилом Ключевского:

"Заполнение электронных слоев происходит в порядке увеличения сумм главного и орбитального квантовых чисел (n + l)".

Так сумма (n + l) для электронов 3d-орбитали равна 5 (3 + 2), для электронов 4s-орбитали - 4 (4 + 0). Поэтому вначале электронами заполняется 4s-орбиталь, а затем 3d-орбиталь. Сумма (n + l) для электронов 4f-орбитали равна 7 (4 + 3), что также больше суммы (n + l) для электронов 5s-, 5p- и 6s-орбиталей.

Если для 2-х орбиталей суммы (n + l) имеют одинаковые значения, то вначале электронами заполняется орбиталь с меньшим значением главного квантового числа.

Например для электронов 3d- и 4p-орбиталей сумма n + l = 5 (соответственно 3 + 2 и 4 + 1). Но так как для электронов 3d-орбитали главное квантовое число n = 3, а для электронов 4p-орбитали n = 4, в первую очередь заполняются 3d-орбитали. Лишь после того, как заполнены орбитали меньших энергий, начинается заполнение орбиталей бoльших энергий.

В химии валентными электронами называют электроны, находящиеся на внешней, или валентной, оболочке атома. Валентные электроны определяют поведение химического элемента в химических реакциях. Чем меньше валентных электронов имеет элемент, тем легче он отдаёт эти электроны (проявляет свойства восстановителя) в реакциях с другими элементами. И наоборот, чем больше валентных электронов содержится в атоме химического элемента, тем легче он приобретает электроны (проявляет свойства окислителя) в химических реакциях при прочих равных условиях. Полностью заполненные внешние электронные оболочки имеют инертные газы, которые проявляют минимальную химическую активность. Периодичность заполнения электронами внешней электронной оболочки определяет периодическое изменение химических свойств элементов в таблице Менделеева.

 

13. Химическая связь — явление взаимодействия атомов, обусловленное перекрыванием электронных облаков связывающихся частиц, которое сопровождается уменьшением полной энергии системы.

§ Если атомы, образующие простую ковалентную связь, одинаковы, то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующие связь, в равной степени владеют обобществлённой электронной парой. Такая связь называется неполярной ковалентной связью. Такую связь имеют простые вещества, например: О2, N2, Cl2. Но не только неметаллы одного типа могут образовывать ковалентную неполярную связь. Ковалентную неполярную связь могут образовывать также элементы-неметаллы, электроотрицательность которых имеет равное значение, например в молекуле PH3 связь является ковалентной неполярной, так как ЭО водорода равна ЭО фосфора.

§ Если атомы различны, то степень владения обобществленной парой электронов определяется различием в электроотрицательностях атомов. Атом с большей электроотрицательностью сильнее притягивает к себе пару электронов связи, и его истинный заряд становится отрицательным. Атом с меньшей электроотрицательностью приобретает, соответственно, такой же по величине положительный заряд. Если соединение образуется между двумя различными неметаллами, то такое соединение называетсяковалентной полярной связью.

 

Ионная связь — прочная химическая связь, образующаяся между атомами с большой разностью (>1,7 по шкале Полинга) электроотрицательностей, при которой общаяэлектронная пара полностью переходит к атому с большей электроотрицательностью.Это притяжение ионов как разноименно заряженных тел. Примером может служить соединение CsF, в котором «степень ионности» составляет 97 %.Рассмотрим способ образования на примере хлорида натрия NaCl. Электронную конфигурацию атомов натрия и хлора можно представить: 11 Na 1s2 2s2 2p 6 3s1; 17 Cl 1s2 2s2 2p6 Зs2 3р5 Как это атомы с незавершенными энергетическими уровнями. Очевидно, для их завершения атому натрия легче отдать один электрон, чем присоединить семь, а атому хлора легче присоединить один электрон, чем отдать семь. При химическом взаимодействии атом натрия полностью отдает один электрон, а атом хлора принимает его. Схематично это можно записать так: Na. — l е —> Na+ ион натрия, устойчивая восьмиэлектронная 1s2 2s2 2p6 оболочка за счет второго энергетического уровня. :Cl + 1е --> .Cl - ион хлора, устойчивая восьмиэлектронная оболочка. Между ионами Na+ и Cl- возникают силы электростатического притяжения, в результате чего образуется соединение. Ионная связь — крайний случай поляризации ковалентной полярной связи. Образуется между типичными металлом и неметаллом. При этом электроны у металла полностью переходят к неметаллу. Образуются ионы.

Если химическая связь образуется между атомами, которые имеют очень большую разность электроотрицательностей (ЭО > 1.7 по Полингу), то общая электронная пара полностью переходит к атому с большей ЭО. Результатом этого является образование соединения противоположно заряженных ионов:

Между образовавшимися ионами возникает электростатическое притяжение, которое называется ионной связью. Вернее, такой взгляд удобен. На деле ионная связь между атомами в чистом виде не реализуется нигде или почти нигде, обычно на деле связь носит частично ионный, а частично ковалентный характер. В то же время связь сложных молекулярных ионов часто может считаться чисто ионной. Важнейшие отличия ионной связи от других типов химической связи заключаются в ненаправленности и ненасыщаемости. Именно поэтому кристаллы, образованные за счёт ионной связи, тяготеют к различным плотнейшим упаковкам соответствующих ионов.

Характеристикой подобных соединений служит хорошая растворимость в полярных растворителях (вода, кислоты и т. д.). Это происходит из-за заряженности частей молекулы. При этом диполи растворителя притягиваются к заряженным концам молекулы, и, в результате Броуновского движения, «растаскивают» молекулу вещества на части и окружают их, не давая соединиться вновь. В итоге получаются ионы окружённые диполями растворителя.

При растворении подобных соединений, как правило, выделяется энергия, так как суммарная энергия образованных связей растворитель-ион больше энергии связи анион-катион. Исключения составляют многие соли азотной кислоты (нитраты), которые при растворении поглощают тепло (растворы охлаждаются). Последний факт объясняется на основе законов, которые рассматриваются в физической химии.

 

Металлическая связь — химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов иинтерметаллических соединений.