Текст 2. BURNING EQUIPMENT

There are two general methods of firing fuel commonly employed: 1) on stationary grates, or 2) on stokers. Also coal may be pulverized to the consistancy of 70 per cent through a 200-mesh screen and burned in suspension. The types of solid fuel encountered in various parts of the world and the general conditions under which they must be burned are so variable that it is impossible to-design one type of grate or stoker that is exactly suited to all fuels. The problem becomes one rather of suiting the equipment to the type of fuel to be handled.

To a certain extent, the design of the furnace must be considered coincidentally with the selection of fuel-burning equipment, so that satisfactory ignition and heat release may be ensured. The choice of equipment for a given set of conditions is limited, and, although any stoker will burn any fuel only one design as a rule will give satisfactory results. Coals may be broadly classified as follows:

Group 1. This group includes the anthracites and semi-anthracites which should be burned without agitation of the fuel bed.

A fuel of this class is satisfactorily burned on travelling grate or chain-grate stokers, on which the coal is fed in a comparatively thin, uniform layer. As combustion progresses, the ash covers the surface of the stoker and acts as a protective blanket, the fuel being supplied with combustion air as it travels toward the ashpit.

Croup 2. This group includes the bituminous coals of the caking type which require agitation of the fuel bed to break up the mass of coke as it forms as well as to resist the tendency of this fuel to fuse into a mat, or cake, that resists the passage of air and retards the process of combustion. Underfeed stokers of the multiple-retort type are designed to burn coals of this class, for the plungers have a characteristic forward and upward motion. By breaking up the surface of the fuel bed, more air passages are created, with a tendency to increase combustion rate. A few coals of this class have a low ash-fusion temperature with a resulting tendency to fuse and jam the operating parts of the stoker. These coals, particularly if high in sulphur, should be avoided as stoker fuels.

Group 3. This group includes midwestern coals and most of the western bituminous coals. These do not tend to soften but form masses of coke, they require no agitation of the fuel bed and are burned to best advantage on chain-grate stokers.

Group 4. This group consists of most of subbituminous coals and lignites which do not fuse when heated and do not require agitation. They have a tendency to disintegrate or slack on the grate as well as drift and sift through if disturbed. They have a tendency to avalanche on inclined grates and are most satisfactorily burned on chain- or traveling-grate stokers.

Текст 3. STOKERS

A stoker should not only be designed from the combustion point of view, but it must be mechanically strong to withstand all working stresses due to high temperature, etc. A simple design will ensure low first cost minimum maintenance and operation for long periods without failure. Some of the factors to be aimed at in stoker design are: maximum rates of burning, highest continuous efficiency and the unlimited choice of fuels.

Any study of the use of stokers must begin with an analysis of the four principal constituents of coal, namely, moisture, volatiles, mixed carbon and ash, or, more generally, water, tar, coke and dirt. These determine the features which should be embodied in the stoker and furnace equipments so that the proper treatment of the coal at the correct time is effected on its passage through the furnace. Whichever of the two types be used the coal has to be taken from the bunkers to the feeding hoppers on the boilers. The coal falls by gravity from the bunkers through a valve into feeding chutes. In some installations automatic weighers are included in the downspouts between the cut-off valves and the boiler feed hoppers. The cut-off valves may be operated from the firing floor by means of chains. The chutes are one ore two types namely, traversing and fixed.

There are usually two or three chutes for large boilers. The travelling chutes travel the full width of the feeding hopper, the motion being affected by means of a continuously rotating screwed shaft which engages with a special nut attached to the chute. The operating shaft has right- and left-hand helical grooves and the nut is designed so that at the end of its travel it reverses automatically.

The chutes are operated from the stoker drive, there being two or four chutes for large boiler units. Coal chutes are of welded mild steel plates, wearing plates also being included.