СТРОЕНИЕ ПЕПТИДОВ И БЕЛКОВ. ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ПЕПТИДОВ

До середины XX в. считалось, что пептиды не являются самостоятельным классом органических соединений, а представляют собой продукты неполного гидролиза белков, которые образуются в ходе переваривания пищи, в технологическом процессе или при хранении пищевых продуктов. И только после того как В. Дю Виньо (1953) определил последовательность остатков аминокислот двух гормонов задней доли гипофиза - окситоцина и вазопрессина - и воспроизвел их синтез химическим путем, появилась новая точка зрения на физиологическую роль и значение данной группы соединений. Сегодня обнаружено большое количество пептидов, которые обладают индивидуальной последовательностью аминокислот и даже не встречаются в гидролизатах природных белков.

Пептиды имеют невысокую молекулярную массу, широкий набор аминокислотных остатков (в их состав входят, например, D-аминокис-лоты) и структурные особенности (циклические, разветвленные). Названия пептидов образуются из названий аминокислотных остатков путем последовательного их перечисления, начиная с КН2-концевого остатка, с добавлением суффикса -ил, кроме С-концевой аминокислоты, название которой остается без изменений. Например:

В природе существует два вида пептидов, один из которых синтезируется и выполняет физиологическую роль в процессе жизнедеятельности организма, другой образуется за счет химического или ферментативного гидролиза белков в организме или вне его. Пептиды, образующиеся в процессе гидролиза вне организма (in vitro), широко используются для анализа аминокислотной последовательности белков. С помощью пептидов расшифрована аминокислотная последовательность фермента лизоцима, гормона поджелудочной железы инсулина (Сэнджер), нейротоксина яда кобры (Ю. Овчинников и др.), аспартатаминотрансферазы (А. Браунштейн и др.), пепсиногена и пепсина (В. Степанов и др.), лактогенного гормона быка (Н. Юдаев) и других биологически активных соединений организма.

Ферментативное образование пептидов происходит в желудочно-кишечном тракте человека в процессе переваривания белков пищи. Оно начинается в желудке под действием пепсина, гастриксина и заканчивается в кишечнике при участии трипсина, химотрипсина, амино- и кар-боксипептидаз. Распад коротких пептидов завершается ди- и трипепти-дазами с образованием свободных аминокислот, которые расходуются на синтез белков и других активных соединений. Гидролиз белка в желудочно-кишечном тракте обеспечивает структуру радикалов концевых аминокислот, зависящую от места приложения фермента (свойство специфичности). Так, при разрыве белка пепсином пептиды в качестве N-кон-цевых аминокислот содержат фенилаланин и тирозин, а в качестве С-концевых - глутаминовую кислоту, метионин, цистин и глицин. Пептиды, образующиеся из белка при участии трипсина, в качестве С-конце-вых аминокислот содержат аргинин и лизин, а при действии химотрипсина - ароматические аминокислоты и метионин.

Для многих природных пептидов установлена структура, разработаны методы синтеза и установлена их роль. На рис. 2.8 отображены физиологическое значение и функциональная роль наиболее распространенных групп пептидов, от которых зависят здоровье человека и органолептические и санитарно-гигиенические свойства пищевых продуктов.


Рис. 2.8. Важнейшие группы пептидов

Пептиды-буферы. В мышцах различных животных и человека обнаружены дипептиды - карнозин и ансерин, выполняющие буферные функции за счет входящего в их состав имидазольного кольца гисти-дина. Отличительной особенностью пептидов является присутствие в них остатка р-аланина:

H2N-р-аланил-L-гистидин-СООН

карнозин

β-аланил-N-метил-L-гистидин.

ансерин

Синтез дипептидов-буферов осуществляется по схеме без участия рибосом:

β-аланин + АТФ + фермент ↔ фермент-β-аланиладенилат + дифосфат;

фермент-β-аланиладенилат + L-гистидин -" → β-аланил-L-гистидин + АМФ + фермент.

Карнозин и ансерин являются составной частью экстрактивных веществ мяса. Содержание их в последнем достигает 0,2-0,3% от сырой массы продукта.

Пептиды-гормоны. Гормоны - вещества органической природы, вырабатываемые клетками желез внутренней секреции и поступающие в кровь для регуляции деятельности отдельных органов и организма в целом. Гормоны окситоцин и вазопрессин выделяются задней долей гипофиза (придаток мозга). Они содержат по 9 аминокислотных остатков, одну дисульфидную связь и на С-конце - амидную группу -CONH2:

Регуляторная функция обоих гормонов заключается в стимуляции сокращения гладкой мускулатуры организма и секреции молока

молочными железами. Различия в природе остатков аминокислот в положении 3 и 8 дополнительно наделяют вазопрессин способностью регулировать водный баланс, осмотическое давление в крови и стимулировать процессы запоминания.

Гормоны гипоталамуса, в котором эндокринный аппарат взаимодействует с высшими отделами ЦНС, являются низкомолекулярными пептидами. Так, тиролиберин представлен трипептидом, состоящим из пи-роглутаминовой (циклической) кислоты, гистидина и пролинамида (Пи-роглу - Гис - Про - NH2), люлиберин является декапептидом (Пиро-глу - Гис - Три - Сер - Тир - Гли - Лей - Apr - Про - Гли - NH2), а соматостатин - циклическим тетрадекапептидом:

Гипоталамические гормоны участвуют в процессе высвобождения гормонов передней доли гипофиза. Тиролиберин, например, контролирует освобождение тиротропина - гормона, принимающего участие в регуляции деятельности щитовидной железы, соматостатин регулирует активность гормона роста (соматропина), а люлиберин участвует в регуляции выделения лютропина - гормона, влияющего на деятельность половых органов. Многие из гормонов (окситоцин, тиролиберин, пролактин - гормон передней доли гипофиза и гонадолиберин - гормон гипоталамуса) присутствуют в молоке жвачных животных и кормящих матерей.

Известен пептидный гормон меланотропин (МСГ), выделяемый в кровь промежуточной долей гипофиза. Одноцепочный пептид стимулирует образование пигмента, обуславливающего цвет глаз, кожи, волос. Различают две разновидности МСГ: α-МСГ, состоящий из 13 остатков аминокислот, и β-МСГ, в состав которого у человека входит 22 аминокислотных остатка. Панкреатический глюкагон, выделенный в 1948 г. в кристаллическом состоянии из поджелудочной железы человека, состоит из 29 остатков аминокислот. Он обладает двойным действием: ускоряет распад гликогена (гликогенолиз) и ингибирует синтез его из УДФ-глюкозы. Гормон активирует липазу, стимулируя процесс образования жирных кислот в печени.

Нейропептиды. В последние годы в отдельную группу выделяют более 50 пептидов, содержащихся в мозге человека и животных. Эти вещества определяют реакции поведения (боязнь, страх), влияют на процессы запоминания, обучения, регулируют сон, снимают боль. Нейропептиды, называемые эндорфинами и энкефалинами, являются

производными β-липотропного гормона гипофиза, состоящего из 91 остатка аминокислот. β-Эндорфин представляет фрагмент гормона с 61-го по 91-й, у-эндорфин - с 61-го по 77-й, а а-эндорфин - с 61-го по 76-й остаток аминокислот. Энкефалины являются пентапептидами следующего строения:

Тир - Гли - Гли - Фен - Мет Тир - Гли - Гли - Фен - Лей
метионинэнкефалин лейцинэнкефалин

Во всем мире сегодня интенсивно проводятся работы по выделению и изучению нейропептидов, целью которых является получение искусственным путем биологически активных соединений для использования их в качестве лекарств.

Вазоактивные пептиды. К группе пептидов, оказывающих влияние на тонус сосудов (вазоактивные), относятся брадикинин, кал-лидин и ангиотензин. Первый пептид содержит 9 остатков аминокислот, второй - 10, а третий - 8. Все они синтезируются из неактивных белковых предшественников в результате процесса постгрансляционной модификации. Например, ангиотензин, обладающий сосудосуживающими свойствами, образуется из белка сыворотки ангиотензиногена при последовательном действии протеолитических ферментов:

Пептидные токсины. Пептидную природу имеет ряд токсинов, вырабатываемых микроорганизмами, ядовитыми грибами, пчелами, змеями, морскими моллюсками и скорпионами. Идентифицировано 5 энтеротоксинов, продуцируемых бактериями Staphylococcus aureus (А, В, С, D и Е) и 7 нейротоксинов (от А до G), вырабатываемых Clostridium botulinum. Стафилококковые токсины, имея в своем составе 239-296 остатков аминокислот, отличаются по значению изоэлектри-ческой точки, коэффициентам диффузии и седиментации. Токсины могут стать причиной пищевого отравления при употреблении молочных, мясных, рыбных, жидких яичных продуктов, а также салатов и кремовых

начинок мучных кондитерских изделий при условии несоблюдения правил санитарно-гигиенической обработки и хранения последних. Боту-линические токсины относятся к наиболее сильнодействующим ядам и часто вызывают смертельные пищевые отравления при использовании овощей, рыбы, фруктов и приправ, не обработанных в соответствии с нормами. Молекулярная масса, например, токсина Е - 350 кД, токсина А - несколько больше. Эти токсины инактивируются при температуре выше 80°С и в кислой среде.

Энтеротоксины могут вырабатываться и бактериями Salmonella и Clostridium perfringens, являясь при этом причиной расстройства работы кишечника, обморочных состояний и лихорадки (брюшного тифа). Продуцируются энтеротоксины чаще в продуктах животного происхождения (говядина, птица, сыр, рыба), чем растительного (фасоль, оливы). Наиболее хорошо изучен энтеротоксин С. perfringens с молекулярной массой 36 кД и изоэлектрической точкой 4,3. Токсин содержит 19 остатков аминокислот, среди которых преобладают аспарагиновая кислота, лейцин и глутаминовая кислота. Ухудшая транспорт электролитов и глюкозы, данный токсин вызывает гибель клеток кишечника.

Ядовитый гриб бледная поганка содержит около 10 циклических пептидов с молекулярной массой около 1000. Типичным представителем их является особо ядовитый токсин а-аманитин. К токсичным компонентам яда пчел, оказывающим сильное влияние на ЦНС, относится апа-мин, состоящий из 18 аминокислотных остатков, а морских моллюсков - конотоксин, содержащий 13 остатков:

Пептиды- антибиотики. Представителями данной группы пептидов являются грамицидин S - циклический антибиотик, синтезируемый бактериями Bacillus brevis, и сурфактин - поверхностно-активный (содержащий сложноэфирную связь) антибиотик, синтезируемый бактериями Bacillus subtilius. Оба антибиотика эффективны при борьбе с инфекционными заболеваниями, вызываемыми стрептококками и пневмококками:

Грамицидин способен быть ионофором, то есть переносчиком ионов К+и Na+ через мембраны клеток.

Структурной основой антибиотиков, выделяемых плесневыми грибами Penicillium, является дипептид, построенный из остатков D-валина и цистина:

Антибиотики группы пенициллина эффективны при борьбе с инфекциями, вызываемыми стафилококками, стрептококками и другими микроорганизмами.

Вкусовые пептиды. Наиболее важными соединениями этой группы являются сладкие и горькие пептиды. В производстве мороженого, кремов в качестве подсластителей или усилителей вкуса используется аспартам, представляющий собой метиловый эфир L-α-аспартил-L-фенилаланина:

Аспартам слаще сахарозы в 180 раз, однако при длительном хранении и тепловой обработке сладость уменьшается. Подсластитель противопоказан больным фенилкетонурией. Пептиды горького вкуса образуются

при распаде белков в сырах и молоке при участии протеаз молочнокислых бактерий. Они представляют собой низкомолекулярные гидрофобные соединения, содержащие от 2 до 8 остатков аминокислот полипептидных цепей αs-казеина и β-казеина. Многие из горьких пептидов содержат N-концевую циклизованную глутаминовую кислоту. По мере гидролиза пептидов горький вкус таких соединений обычно исчезает.

Протекторные пептиды. Одним из наиболее распространенных соединений с протекторными свойствами является трипептид глутатион (γ-глутамилцистеинилглицин). Глутатион содержится во всех животных, растениях, бактериях, однако наибольшее его количество встречается в дрожжах и зародыше пшеницы. Вступая в окислительно-восстановительные реакции, глутатион выполняет функцию протектора, предохраняющего свободные -SH группы от окисления.

Он принимает на себя действие окислителя, "защищая" тем самым белки или, например, аскорбиновую кислоту. При окислении глутатио-на образуется межмолекулярная дисульфидная связь:

Глутатион принимает участие в транспорте аминокислот через мембраны клеток, обезвреживает соединения ртути, ароматические углеводороды, перекисные соединения, предотвращает заболевание костного мозга и развитие катаракты глаз.

Восстановленная форма глутатиона, входящая в состав хлебопекарных дрожжей, особенно долго хранившихся, или муки из проросшего зерна, понижает упругие свойства клейковины и ухудшает качество пшеничного хлеба. Дезагрегирующее действие восстановленного глутатиона на белки клейковины может осуществляться как без разрыва пептидных связей, так и с их разрывом. Дезагрегация белков без разрыва пептидных связей происходит при участии НДДФН2-содержащего фермента глута-тионредуктазы:

Г-S-S-Г + НАД2Ф ↔ 2Г-SH + HАДФ,

а с разрывом - в присудствии тиоловых простериаз, активный центр которых содержит сульфгидрильные группы:

Разрыв пептидных связей в белках под действием активированных протеиназ приводит к ухудшению реологических свойств теста и качества хлеба в целом.

Пептиды, имеющие достаточно высокую молекулярную массу (более 5000 Да) и выполняющие ту или иную биологическую функцию, называются белками. Под первичной структурой белков понимают последовательность аминокислот в полипептидной цепи и положение дисуль-фидных связей, если они имеются. Последовательность аминокислотных остатков в цепи реализуется за счет пептидной связи. Пептидная связь имеет частично двойной характер, так как расстояние между -NH и -СО группами в ней занимает промежуточное (1,32А) положение между расстояниями одинарной (1,49А) и двойной (1,27А) связей. Кроме того, группы R чередуются по обе стороны пептидной связи, следовательно, наблюдается трансизомерия. Расстояния между другими атомами и углы в структуре полипептидных цепей представлены на рис. 2.9.

Многие белки состоят из нескольких полипептидных цепей, соединенных между собой ди-сульфидными связями. Образование дисульфид-ных мостиков -S-S- возможно и между двумя остатками цистеина, находящимися в одной полипептидной цепи. Примером могут служить основные белковые фракции клейковины: глиадин и глютенин пшеницы (см. Белки злаков).

Определение последовательности аминокислот в белках представляет интерес по двум причинам. Во-первых, эти данные необходимы для выяснения молекулярной основы биологической активности и, во-вторых, для установления тех принципов, на основе которых формируются те пространственные структуры, от которых зависят физико-химические, питательные и функциональные свойства белков, определяющие их усвояемость, переваривание, качество пищевых продуктов, поведение в ходе технологических потоков и хранения. Для определения первичной структуры белка сначала разрывают


Рис. 2.9. Расстояние и углы между атомами в структуре полипептидной цепи

дисульфидные связи, затем определяют аминокислотный состав, N-кон-цевую и С-концевую аминокислоты и порядок соединения аминокислот друг с другом. Разрыв дисульфидных -S-S- связей осуществляют сильным окислителем (надмуравьиной кислотой) или восстановителем, а аминокислотный состав определяют после гидролиза пептидных связей 6 н раствором НС1 при 110°С в течение 24 ч в вакууме. Для анализа триптофана проводят щелочной гидролиз, так как в кислой среде данная аминокислота разрушается. Смеси аминокислот, полученные в результате гидролиза, фракционируют хроматографией на катионообменной смоле и идентифицируют (см. Качественное и количественное определение белка).

Порядок соединения аминокислотных остатков друг с другом определяют химическими (метод Эдмана) и ферментативными методами. Ферментативные методы основаны на свойстве специфичности ферментов. Так, трипсин разрывает молекулу на уровне карбоксильных групп лизина и аргинина, химотрипсин - карбоксильных групп ароматических аминокислот:

Для анализа последовательности аминокислотных остатков исходный материал делят на три части, одну из которых обрабатывают холодной НС1, другую - трипсином, третью - химотрипсином. Полученные смеси пептидов анализируют по аминокислотному составу и обрабатывают, наконец, экзопептидазами (амино- и карбоксипептидазами). Результаты суммируют с учетом того, что разрыв пептидов происходит в определенных местах цепи. Ниже иллюстрируется аминокислотная последовательность пептида из 25 первых аминокислот α2- и γ1,-глиадинов пшеницы, расшифрованная таким образом для американского сорта Понка:

Полипептидная цепь белковой молекулы не лежит в одной плоскости. Полинг и Кори показали, что многие белки имеют конфигурацию а-спирали, которую легко можно представить в виде спирали, идущей по поверхности воображаемого цилиндра. Такая структура устойчива благодаря большому количеству водородных связей между -СО и -NH


Рис. 2.10.Вторичная структура белков: а) α-спираль (жирные линии - водородные связи); б) β-конфор-мация (R - боковые группы аминокислотных остатков)

группами пептидных связей. Водородные связи возникают между ковалентно связанным атомом водорода, несущим небольшой положительный заряд, и соседним атомом, обладающим незначительным отрицательным зарядом (кислородом, азотом). Некоторые фибриллярные белки ф-керотин, фиброин шелка) образуют (3-конформацию, представляющую как бы ряд листков, расположенных под углом друг к другу (рис. 2.10).

Наряду с большим количеством водородных связей в стабилизации вторичной структуры белка принимают участие другие относительно слабые связи: электростатические и гидрофобные. Энергия этих связей мала по сравнению с энергией ковалентных пептидных и ди-сульфидных связей, однако благодаря своей многочисленности они обеспечивают устойчивость макромолекул и позволяют образовывать активные комплексы (фермент-субстрат, антиген-антитело, репрессор-ДНК). Природа таких связей приведена на рис. 2.11.

Между двумя противоположно заряженными полярными группами, например, боковыми цепями аспарагиновой и глутаминовой кислот и положительно заряженным протони-рованным основанием (остатки аргинина, лизина, гистидина), осуществляются электростатические притяжения. Они более прочные, чем водородные связи. Гидрофобные связи возникают при участии групп -СН2, - СН3 ва-лина, лейцина или ароматического кольца фенил-аланина. Они представляют собой скопление заряда, обусловленного выталкиванием воды из пространства при близком взаимном расположении неполярных групп.

Регулярную вторичную структуру пептидных связей обеспечивают водородные связи, тогда как другие слабые силы участвуют в ней в меньшей степени. Слабые силы имеют большее значение в формировании третичной структуры белка. Впервые третичная структура


Рис. 2.11.Слабые связи:Водородные: 1 - между пептидными группами; 2 - между кислотами и спиртами (серии); 3 - между фенолом и имидазолом. Электростатические: 4 - между основаниями (аргинин, лизин) и кислотами (глутаминовая, аспарагиновая). Гидрофобные: 5 - при участии лейцина, изолейцина, валина, аланина; 6 - с участием фенилаланина

установлена для миоглобина, затем для гемоглобина крови. В данной структуре белка важную роль играют изгибы, обусловленные присутствием аминокислоты пролин. В изгибах отсутствует спирализованная структура. Общим признаком пространственного расположения остатков аминокислот в третичной структуре белков является локализация гидрофобных групп внутри молекулы, гидрофильных - на ее поверхности.

Многие белки обладают четвертичной структурой. Она представляет собой комбинацию субъединиц с одинаковой или разной первичной, вторичной и третичной структурой. Субъединицы соединены друг с другом с помощью слабых нековалентных связей. Действия мочевины, кислых и солевых растворов, детергентов часто приводят к диссоциации белка на субъединицы и потере их биологической активности. Диссоциация может быть обратимой. Примером белков с четвертичной структурой могут служить ферменты лактатдегидрогеназа и глютаматдегидрогеназа, содержащие, соответственно, четыре и восемь субъединиц.

Особенности химического строения боковых цепей аминокислотных остатков и расположение их в пространстве определенным образом обеспечивают, при выполнении белками биологических функций, компле-ментарность (соответствие) контактируемых поверхностей или поверхностей белка с небелковыми соединениями по принципу "ключ к замку". Имеется ряд экспериментальных доказательств относительно механизма формирования структуры молекулы белка путем ассоциации

α-спиралей и складчатых β-слоев (рис. 2.12). Этапы скручивания белка включают формирование двух временно создающихся коротких α- или β-спиралей, которые затем стабилизируются с образованием комплекса. Сформировавшиеся комплексы αα, β, αβ, называемые единицами скручивания, далее выступают в роли самостоятельных центров, способных к взаимодействию с другими элементами вторичной структуры. Задача заключается в том, чтобы как можно полнее расшифровать тот путь, который приводит к формированию функционально активной структуры белка в каждом конкретном случае.


Рис. 2.12.Предполагаемые этапы скручивания белка

44 :: 45 :: 46 :: 47 :: 48 :: 49 :: 50 :: 51 :: 52 :: 53 :: 54 :: 55 :: Содержание

56 :: 57 :: 58 :: 59 :: 60 :: 61 :: 62 :: 63 :: 64 :: 65 :: 66 :: Содержание

Белки пищевого сырья

Белки злаков

Анализируя аминокислотный состав суммарных белков различных злаковых культур с точки зрения состава эталонного белка для питания людей (ФАО, 1973) следует отметить, что все они, за исключением овса, бедны лизином (2,2-3,8%), а за исключением риса и сорго - изолейцином. Для белков пшеницы, сорго, ячменя и ржи характерно относительно небольшое количество метионина (1,6-1,7 мг/100 г белка). Белки пшеницы к тому же содержат недостаточное количество треонина (2,6%), а белки кукурузы - триптофана (0,6%). Наиболее сбалансированными по аминокислотному составу являются овес, рожь и рис.

Аминокислотный состав суммарных белков злаковых культур определяется аминокислотным составом отдельных фракций, в основу классификации которых положен принцип растворимости (Т. Осборн, 1907). При последовательной обработке муки или размолотого зерна водой, 5-10%-м раствором хлорида натрия, 60-80%-м водным раствором спирта и 0,1-0,2%-м раствором гидроксида натрия экстрагируются белковые фракции, соответственно названные альбуминами, глобулинами, пролами-нами и глютелинами. В таблице 2.3 приводится процентное содержание белковых фракций в зерновых культурах. В состав белков входят и так

называемые склеропротеины (нерастворимые белки), содержащиеся в оболочках и периферических слоях зерна. Особенностью белков данной фракции является прочное соединение с лигнино-полисахаридным комплексом. Склеропротеины выполняют структурную функцию и малодоступны для пищеварения. Наряду с белками в зерне содержится небелковый азот (0,7-12,9% от общего азота), включающий свободные аминокислоты (50-60%), пептиды, нуклеотиды и др. Количество небелкового азота-изменяется в зависимости от степени зрелости, выравненнос-ти и прорастания зерна.

Таблица2.3. Содержание белковых фракций в зерне злаковых

Культура Азот фракций (в % от белкового азота)
Альбумины Глобулины Проламины Глютелины Склеропротеины
Пшеница мягкая 5,2 12,6 35,6 28,2 8,7
Рожь 24,5 13,9 31,1 23,3 7,2
Ячмень 6,4 7,5 41,6 26,6 17,9
Кукуруза 9,6 4,7 29,9 40,3 15,5
Овес 7,8 32,6 14,3 33,5 11,8
Гречиха 21,7 42,6 U 12,3 23,3
Рис 11,2 4,8 4,4 63,2 16,4

Для альбуминов отличительной особенностью является высокое содержание лизина (3,9-8,2%), треонина (2,4-7,7%), метионина (1,7- 3,3%), изолейцина (3,1-6,0%) и триптофана (6,7-16,9%). Наиболее высоким содержанием лизина отличаются альбумины овса, риса и проса (6,5-8,2%), более низким - альбумины пшеницы, ячменя и ржи (3,9-4,5%). Высокое количество треонина (4,7-7,7%) характерно для альбуминов ячменя, ржи, овса; низкое (2,4%) - для альбуминов пшеницы.

Глобулиновая фракция злаковых культур беднее, чем альбуминовая по содержанию лизина (2,8-6,0%), триптофана (0,5-1,3%) и метионина (1,1-2,7%). Обе фракции отличаются высоким содержанием глютами-новой и аспарагиновой кислот, но низким - пролина.

Характерной особенностью проламинов является высокое содержание остатков глутаминовой кислоты (13,7-43,3%), пролина (6,3-19,3%) и малое количество ионогенных групп, так как дикарбоновые кислоты почти полностью амидированы. Проламины отличаются низким содержанием лизина. Очень мало его в зеине кукурузы (0,2%), глиадине пшеницы и секалине ржи (0,6-0,7%). Высокий процент лизина (3,3%)

наблюдается в авенине овса. Небольшое количество лизина в проламинах и относительно большое содержание данной фракции в суммарном белке отражается на общей несбалансированности зерна большинства злаковых культур. Проламины бедны к тому же треонином, триптофаном, аргинином и гистидином. Зеин кукурузы, оризин риса и кафирин сорго отличаются высоким уровнем лейцина (16,9-18,6%). По содержанию цис-тина и метионина среди отдельных злаков также наблюдаются различия. Так, глиадин пшеницы в среднем содержит 1,2% метионина и-1,9% цис-тина, а авенин овса - 3,7 и 4,2%, соответственно.

Глютелины по аминокислотному составу занимают промежуточное положение между проламинами и глобулинами. Содержание лизина, аргинина, гистидина в них больше, чем в проламинах. Так, содержание лизина в глютенине пшеницы составляет 2,6%, ржи - 2,3%, ячменя - 4,0%, а овса - 5,0%. По содержанию лизина и цистина между сортами зерна наблюдаются некоторые различия. Например, глютенин пшеницы слабого сорта Акмолинка 1 содержит меньше цистина (5,18%), чем глютенин сильного сорта Саратовская 29 (7,34%). Глютелины ячменя, риса и овса отличаются от глютенина пшеницы более высоким уровнем лизина. Если учесть, что у риса 80% всего белка приходится на глютелины (оризенин), то понятно, почему обеспечивается удовлетворительное содержание лизина (2,6-4,0%) в общем белке рисового зерна. Преобладающими фракциями овса являются глобулины и глютелины, содержащие 5,0-5,5% лизина, что также обеспечивает хорошую сбалансированность данной культуры по лизину.

Белки неравномерно распределяются между морфологическими частями зерна. Основное их количество (65-75%) приходится на эндосперм, меньшее - на алейроновый слой (до 15,5%) и зародыш (до 22%). В алейроновом слое и зародыше концентрация белка высокая^ В зародыше пшеницы содержится 33,3% белка, кукурузы - 26,5%, овса - 19,4%. Алейроновый слой пшеницы и кукурузы содержит более 19% белка. В эндосперме белки распределены также неравномерно, концентрация их снижается по мере продвижения от субалейронового слоя к центру. Субалейроновым слоем называется периферическая зона зерновки, находящаяся под алейроновым слоем. Содержание белка в данной части зерна достигает у кукурузы 27,7%, у сорго 29-30%, у ячменя 21-24%, у риса 29%. Центральная часть эндосперма содержит мало белка (7-9%). В общем же распределение белка по частям зерновки зависит от вида культуры, ее сорта и почвенно-климатических условий выращивания.

Белки зародыша и алейронового слоя представлены в основном альбуминами и глобулинами, выполняющими каталитическую функцию при прорастании зерна (ферменты), а белки эндосперма - альбуминами, глобулинами, проламинами и глютелинами. Большую часть белков

эндосперма злаковых культур (до 80%) составляют запасные белки: спирторастворимые проламины и щелочерастворимые глютелины. Альбумины и глобулины входят в состав мембран органелл зерна, образуют рибосомы, митохондрии, эндоплазматический ретикулум, являются составной частью сложных белков - нуклеопротеидов, липопротеи-дов, фосфопротеидов.

Запасные белки эндосперма злаков сосредоточены в белковых телах, имеющих более простое строение, чем алейроновые зерна (белковые тела алейронового слоя). Алейроновое зерно состоит из кристаллоида (гли-копротеида), глобоида (калиевой, магниевой соли фитиновой кислоты) и основного белкового вещества - аморфной зоны.

У кукурузы и сорго белковые тела эндосперма состоят из матрицы и вдавленных в нее округлых белковых гранул. Матричные белки являются глютелинами, а белки гранул - проламинами. Матричный белок характеризуется однородной структурой, тогда как белковые гранулы имеют пластинчатую структуру с входящими в нее липопротеинами. В эндосперме зрелого зерна пшеницы откладываются белковые образования в виде непрерывной белковой матрицы клиновидной формы и в виде выпуклых серповидных зон под мембраной, окружающей крахмальные зерна. С этими представлениями соотносится классификация Гесса (Hess, 1954), по которой белки муки разделяются на промежуточные (цвикель) и прикрепленные (хафт). Промежуточные белки располагаются между крахмальными зернами и соответствуют белковой матрице, а прикрепленные представляют собой остатки мембран крахмальных зерен. У ржи и пшеницы прикрепленные белки характеризуются лучшим аминокислотным составом. При размоле твердых и стекловидных мягких пшениц раскол компонентов происходит через крахмальное зерно и запасной белок, в результате чего крахмальные зерна разрушаются. При размоле зерна с мучнистым эндоспермом трещины образуются не в крахмальных зернах, а вокруг них, так как между белком и крахмалом существует относительно слабое взаимодействие.

Белковые фракции зерновых культур представляют собой гетерогенную смесь отдельных компонентов, сходных по ряду физико-химических свойств. В то же время компоненты отличаются по электрофорети-ческой подвижности, молекулярной массе, аминокислотному составу и способности взаимодействовать друг с другом при помощи различных типов связей. В альбуминах мягкой пшеницы электрофорезом в ПААГ и крахмальном геле обнаружено 14-21 субъединиц, преобладающими среди которых по количеству являются субъединицы с молекулярной массой около 11 и 20 кД. Эти компоненты различаются по содержанию лизина, аланина, триптофана и гистидина, они отсутствуют в твердой пшенице.

В эндосперме мягкой пшеницы обнаружены доминирующие ос-глобулины с молекулярной массой 24 кД, в зародыше - γ-глобулины с молекулярной массой 210 кД. К глобулинам относят и специфические белки, выделенные в кристаллической форме из бензинового экстракта муки (пуротионин пшеницы, гордотионин ячменя). В зерне они содержатся в виде липопротеинового комплекса, имеют молекулярную массу около 7 кД. Положительного влияния этих белков на хлебопекарные свойства муки не установлено.

С помощью ионообменной хроматографии, гельхроматографии, электрофореза и других методов глиадиновая фракция пшеницы разделена на большое число индивидуальных компонентов. Электрофоретические компоненты глиадина условно объединяют в порядке уменьшения электрофорети-ческой подвижности в кислой среде в четыре группы: α-, β-, γ- и ωглиадины, каждая из которых состоит из нескольких компонентов. Общее число белковых компонентов в пшенице может достигать 40-50. При строго определенных условиях электрофореза в ПААГ или крахмальном геле электрофоретический спектр рассматривается как генотипический признак вида и сорта пшеницы (рис. 2.13). Эталонный спектр содержит 30 позиций, которые распределяются по фракциям следующим образом:


Рис. 2.13.Эталонный электрофоретический спектр глиадина пшеницы [В. Конарев, 1983]

В соответствии с этим эталоном глиадин сорта Лютесценс 230, например, записывается так:

α 567 β 2345 γу2345 ω34689

Большинство глиадиновых белков построено из одной полипептидной цепи с молекулярной массой 30-45 кД и внутримолекулярными ди-сульфидными связями (рис. 2.14). В меньшем количестве в состав глиадина


Рис. 2.14.Дисульфидные связи в глиадине и глютенине

входят белки с молекулярной массой 22; 25,6; 48,8; 57,3 кД и 64-80 кД, а также димеры, построенные из одноцепочных молекул главного типа (36,5 и 44,2 кД). От других компонентов в большей степени отличаются ω-глиадины, имеющие слабый заряд, высокое содержание глутамина, глу-таминовой кислоты, пролина, гидрофобных остатков аминокислот и не содержащие цистина и метионина и, соответственно, внутримолекулярных дисульфидных связей. В питательном отношении со-глиадины являются ценными как источники -NH2 групп и пролина, необходимых для биосинтеза аминокислот и азотистых оснований. Дополнительно в состав глиадина входят низкомолекулярные белки (5-10%) типа альбуминов, глобулинов (11-12 кД) и высокомолекулярная фракция ("низкомолекулярный глютенин") с молекулярной массой 104-125 кД (6%).

Проламины других злаков также образуют индивидуальные электро-форетические спектры, поэтому, как и у пшеницы, они используются в роли белковых маркеров для определения видовой и сортовой принадлежности при выведении новых сортов, основываясь на зависимости ценных хозяйственных признаков зерна (урожайность, засухоустойчивость, неспособность к полеганию и др.) от присутствия конкретных компонентов.

Глютенин пшеницы является более гетерогенной белковой фракцией по сравнению с глиадином. Он состоит из многих компонентов с молекулярной массой от 50 до 3000 кД и без разрыва дисульфидных связей не способен мигрировать в гель при электрофорезе. Восстановленный глютенин разделяется при электрофоретическом анализе не менее чем на 15 компонентов, состоящих из одной полипептидной цепи с молекулярными массами от 11,6 до 133 кД. Некоторые из них идентичны молекулам глиадина (36-44,6 кД), другие - молекулам альбуминов и глобулинов (11,6 кД), а третьи представляют собой специфические высокомолекулярные субъединицы (102, 124, 133 кД). Эти данные позволяют

утверждать, что глютенин - это белок, построенный из многих полипептидных цепей, соединенных между собой дисульфидными связями. Расчеты показывают, что на каждую полипептидную цепь глютенина приходится 2-3 дисульфидные связи с соседними цепями (Эварт, 1968).

Изучению запасных белков, особенно глютенина, отводится важная роль, однако структура их остается до конца не выясненной. Главной трудностью при выяснении особенностей строения является способность белков к агрегации, которую трудно преодолеть известными в настоящее время методами. До сих пор изучаются значения молекулярных масс компонентов и целого белка этой фракции. Так, по последним данным отечественных ученых, глютенин состоит из белковых частиц, включающих несколько субъединиц с молекулярной массой всего 100-300 кД, тогда как на долю частиц сверхвысокой молекулярной массы и одноцепочных молекул приходится не более 20%.

Предложены несколько гипотез строения глютенина и клейковины, однако ни одна из них не дает полного ответа на вопросы взаимосвязи его особенностей с природой вязко-эластичных свойств пшеничного теста. До конца не выяснен вопрос, чем отличаются глютелины зерновых культур, способных и не способных к формированию клейковинного комплекса. По представлениям Эверта, это различие обусловлено неодинаковым способом соединения отдельных полипептидных цепей через дисульфидные мостики при образовании полимерных молекул глю-телинов. Каждая полипептидная цепь, соединяясь с другими, может увеличиваться в длину, образуя структуру линейного типа. Если же полипептидные цепи соединяются большим количеством поперечных ди-сульфидных мостиков, то возникает разветвленная трехмерная структура, обладающая относительно высокой компактностью. Глютелины зерновых культур, образующих клейковину, обладают линейной структурой в отличие от глютелинов культур, не способных формировать ее (овес, кукуруза).

Реологические свойства клейковины и теста получают более полное обоснование, если принять линейную структуру глютенина, тогда и вязкость теста из пшеницы, ржи и ячменя можно объяснить сильным раскручиванием достаточно гибких цепей и постоянным перемещением их относительно друг друга. Свойство эластичности возникает вследствие тенденции растянутых, незакрученных полипептидных цепей возвратиться к их прежней конформации. Причиной же отсутствия вязко-эластичных свойств овсяного и кукурузного теста является ветвящийся способ соединения полипептидных цепей, характеризующийся трехмерной разветвленной структурой.

Во всем мире интенсивно проводятся исследования, посвященные зависимости хлебопекарных качеств пшеницы от полипептидного состава

глютениновой фракции в связи с различиями сортов и классов на генетическом уровне. Установлено, что наиболее выраженное влияние на реологические свойства клейковины и качество хлеба оказывает присутствие высокомолекулярных субъединиц глютенина (100 кД) или соотношение высоко- и низкомолекулярных субъединиц. Всего обнаружено около 25 субъединиц с высокой молекулярной массой, 3-5 из них присутствует в каждом сорте. Каждой субъединице присвоен номер в зависимости от подвижности в ПААГ с ДДС-Na, и выясняется конкретная роль ее в обеспечении качества зерна. Например, 98% американских сортов пшеницы, характеризующиеся высокой "силой" и хорошей эластичностью теста, содержат субъединицы 5+10, синтез которых кодируется хромосомой 1Д, тогда как у английских пшениц с низким качеством они встречаются только у 19% образцов. Такая же картина наблюдается и в отношении высокомолекулярных субъединиц 7+8 и 7+9, кодируемых хромосомой В1.

Реологические свойства клейковины и качество пшеничного хлеба зависят не только от присутствия высокомолекулярных субъединиц (60%), но и от наличия хромосомы 1BL/1RS (7%), полиморфизма низкомолекулярного глютенина, глиадина (а-, Р-, у-, со-), количества белка и активности а-амилазы (31%). Глютенин придает клейковине упругие свойства, а глиадин обуславливает растяжимость и связность, то есть ни глютенин, ни глиадин в отдельности не обладают характерными реологическими свойствами клейковины, только взаимодействие этих фракций в едином комплексе создает клейковинный белок со всеми присущими ему особенностями. Предполагают, что "полипептидные цепи глиадина в разных местах и разными связями соединяются с полимеризо-ванными молекулами глютениновой фракции, объединяя их в сложную трехмерную сетку переплетающихся полипептидных цепей" (А. Вакар, 1975). В структуре такой сетки значительную роль помимо ковалентных дисульфидных связей играют нековалентные взаимодействия: водородные, электростатические (ионные) связи и гидрофобное взаимодействие. Всем им отводится важная роль при объяснении различий в реологических свойствах крепкой и слабой клейковины (растяжимости, связности, упругости, эластичности).

Аминокислотный состав клейковинного белка и соотношение глиа-диновой и глютениновой фракций не являются показателями его качества, тогда как растворимость, содержание водородных, дисульфидных связей и вискозиметрические характеристики соотносятся с различиями реологических характеристик клейковины. Крепкая клейковина отличается от слабой меньшей растворимостью в разных растворителях, большим количеством водородных и дисульфидных связей, меньшими значениями характеристической вязкости (η), удельного

гидродинамического объема и осевого отношения частиц (в/а). Частицы крепкой клейковины имеют уплотненную структуру, слабой - разрыхленную.

Более высокая скорость агрегации белков клейковины хорошего качества при действии на них солей свидетельствует о большей роли гидрофобных взаимодействий в структуре крепкой клейковины по сравнению со слабой. Установлен больший вклад этих видов взаимодействий в агрегацию глютенина и его фракций. Для упругой, эластичной клейковины на долю белков глютенина, перешедшего в раствор за счет разрыва гидрофобных связей, приходится 25,4%, ионных- 17,3%, водородных - 56,3%, в то время как для неупругой и растяжимой клейковины распределение белка по растворимости составляет, соответственно, 7,1; 12,8 и 80,1 %. Излишняя "гидрофобизация" поверхности белковых молекул (действие жирных кислот, тепловая денатурация и т.д.) приводит к ухудшению реологических свойств клейковины (связности), снижению гидратации и растворимости. Таким образом, разная степень упругости, растяжимости и связности определяется различным соотношением сил ковалентного и нековалент-ного характера (гидрофобные, ионные, водородные связи) как внутри фракций клейковины, так и на уровне взаимодействия их друг с другом.

Признавая за глиадином и глютенином главенствующую роль в обеспечении качества клейковины, необходимо учитывать роль небелковых соединений в формировании ее структуры. Высокая реакционная способность химических группировок молекул белка делает возможным взаимодействие их с липидами и углеводами и образование, соответственно, липопротеиновых и гликопротеиновых комплексов, оказывающих влияние на структуру и свойства клейковины. Общепризнана гипотеза, по которой фосфолипиды являются составной частью липопротеина, выполняющего роль слоистой структуры между белковыми пластинками и обеспечивающего деформацию скольжения (Гросскрейтц, 1960). В целом же особенности взаимодействия белков и других веществ зерна остаются до конца не изученными.

С клейковинным комплексом пшеницы находятся во взаимодействии протеазы, их белковые ингибиторы, амилазы и липоксигеназа (табл. 2.4). Протеазы извлекаются щелочным раствором соды, р-амилаза - водным

Таблица 2.4. Ферментативная активность белков клейковины [М. Попов, 1998]

Растворитель Растворенный белок, % Активность ферментов, ед/r клейковины
Протеазы Липоксигеназа β-Амилаза
Сода 0,35%-я Спирт 70%-й Глугатион 0,75%-й 23,3 49,1 92,7 5,94 0 0 0 0 780 0 1560 9835

раствором спирта, а липоксигеназа и β-амилаза - раствором глютатио-на. В покоящемся зерне ферменты не проявляют своей активности, тогда как при прорастании они участвуют в распаде и превращениях запасных питательных веществ. Не менее важная роль отводится ферментам и при тестоведении. Протеазы, частично дезактивируя белки, ослабляют клейковину, липоксигеназа, при участии которой продукты окисления жирных кислот окисляют -SH группы белка, укрепляет ее. Высвобождение липоксигеназы из клейковины происходит в присутствии восстановленного глютатиона, с другой стороны, это же соединение, принимая участие в тиоловом обмене с клейковиной, уменьшает количество S-S связей и ослабляет ее. Таким образом, ферментные системы в комплексе с клейковинными белками выступают в роли регулятора качества хлеба из пшеницы.

Среди злаковых культур особого внимания заслуживает белковый комплекс первой искусственно созданной зерновой культуры, полученной

Таблица2.5. Аминокислотный состав белков муки (в г на 100 г белка)

Аминокислота Яровая рожь Тритикале Твердая пшеница
Лизин 3,49 2,80 2,29
Гистидин 2,14 2,34 2,37
Аргинин 4,55 4,77 3,64
Аспарагиновая кислота 6,82 5,67 4,62
Треонин 3,26 3,05 2,82
Серии 4,11 4,37 4,37
Глутаминовая кислота 30,51 32,91 35,78
Пролин 15,29 14,18 13,92
Глицин 3,82 3,87 3,52
Алании 4,06 3,55 3,27
Цистин 2,65 3,22 2,66
Валин 5,22 4,93 4,77
Метионин 2,15 2,25 2,14
Изолейцин 4,21 4,37 4,51
Лейцин 6,65 7,55 7,46
Тирозин 2,16 2,81 2,67
Фенил аланин 5,16 4,98 5,48
Аммиак 3,40 3,25 3,91

при скрещивании пшеницы (Triticum) и ржи (Secale) - тритикале. С точки зрения питательности тритикале - ценная культура, так как ее отличает относительно высокий уровень белка (11,7-22,5%) и улучшенный аминокислотный состав по сравнению с пшеницей. Аминокислоты в тритикале содержатся, как правило, в количествах, промежуточных между родительскими формами (табл. 2.5). Более высокое содержание лизина, метионина и других аминокислот существенно для пищевой ценности. В данной культуре геномы ржи и пшеницы не взаимодействуют между собой с образованием "новых" белков, поэтому их электрофореграммы являются идентичными электрофореграммам смеси белков родительских форм.

По сравнению с пшеницей тритикале содержит больше водорастворимых и солерастворимых белков, но меньше - спирторастворимых и значительно меньше - белков нерастворимого остатка, поэтому в хлебопечении она может использоваться только в смеси с пшеничной мукой или с улучшителями.

56 :: 57 :: 58 :: 59 :: 60 :: 61 :: 62 :: 63 :: 64 :: 65 :: 66 :: Содержание

66 :: 67 :: 68 :: 69 :: 70 :: 71 :: 72 :: Содержание

Белки бобовых культур

Основную часть семядолей бобовых культур (сои, гороха, фасоли, вики) составляют запасные белки, являющиеся в соответствии с классификацией Осборна глобулинами. Кроме того, в семенах содержится небольшое количество альбуминов, которые не являются запасными белками. В качестве самостоятельной группы в семядолях не обнаружены глютелины. Извлекаемые щелочью белки также представляют собой глобулины, но они находятся во взаимодействии с полисахаридами. Общее содержание белка в бобовых культурах высокое и составляет 20-40% от общей массы.

Из суммарного солевого белкового экстракта осаждением сернокислым аммонием выделяют два основных глобулиновых компонента, получившие название вицилина и легумина. С учетом значений констант седиментации (см. Качественное и количественное определение белка) у сои, вики, гороха и других культур их называют 7S и 1 IS белками, соответственно. Оба эти вида белков обладают сложной четвертичной структурой, которая определяет их функции и свойства. Диссоциация 11S белков семян на субъединицы обнаружена еще в 30-е гг. Сведбергом и Пе-дерсеном, но более детально она изучена позднее. Установлено, что 1 IS белки семян бобовых диссоциируют сначала на 7S субъединицы, затем на субъединицы с коэффициентом седиментации 2-3S. Диссоциация 11S белков протекает ступенчато по схеме:

11S → 2 х 7S → 6 х 3S → 12 х 2S 66

Результаты, полученные методом седиментационного равновесия, свидетельствуют о том, что каждая из 2S субъединиц, образующихся под влиянием сильных диссоциирующих агентов, таких как мочевина, состоит из одной полипептидной цепи с молекулярной массой 30 кД (табл. 2.6), а общее количество полипептидных цепей в молекуле 11S белка равно 12.

Таблица 2.6.Молекулярные массы субъединиц 1 IS белков сои и вики

Ступень диссоциации Условия диссоциации Белок сои Легумин вики
S20 w Молекулярная масса, Д S20 w Молекулярная масса, Д
11S рН7,0 12,2 363 000 12,9
7S рН4,0 - 180 000 8,0
3S рН2,7 3,5 3,3
2S 4М мочевина - 31 000 1,7
2S 4М гуанидингидро- хлорид - - __

На основании данных хроматографического разделения белков на ДЭАЭ-целлюлозе, электрофореза в ПААГ, значений констант седиментации, результатов аминокислотного анализа и определения N-концевых аминокислот для белков большинства бобовых культур более детально конкретизирована вышеописанная схема диссоциации легумина. Для белков, например, вики она выглядит следующим образом:

А6В4С2 →2 х А3В2С →4хАВ + 2хАС -" 6хА + 4хВ + 2хС

Каждая молекула 1 IS белков вики состоит из шести основных (А) и шести кислых 2S субъединиц двух видов - В и С. Некоторые свойства этих субъединиц приводятся ниже:

  А В С
S20w 1,40 2,28 2,25
Молекулярная масса, кД 24,3 37,6 32,6
N-концевая АК Глицин Лейцин Треонин

11 S белок сои отличается от легумина вики наличием трех, а не двух типов кислых субъединиц. Так же как и у легумина вики, N-концевой аминокислотой основной фракции является глицин, а ее молекулярная масса равна 22,3-24,4 кД. Кислые субъединицы имеют ту же молекулярную массу, что и субъединицы В легумина вики. 11S белок сои может

содержать несколько типов и основных субъединиц, однако точно известно, что молекула 1 IS белка сои также состоит из шести основных и шести кислых субъединиц.

Особенности модели четвертичной структуры 11S белков бобовых аналогичны особенностям этой же структуры 11S белков семнадцати других семейств, относящихся к филогенетически удаленным группам (капуста, тыквенные, гречиха, рапс). Так же как и легумин вики, эдес-тин конопли, например, диссоциирует на шесть 3S субъединиц, каждая из которых состоит из одной основной субъединицы с N-концевым глицином и молекулярной массой 23 кД и одной кислой субъединицы. Аминокислотный состав этих субъединиц сходен; он представлен в табл. 2.7. Данные позволяют считать, что 11S белки обладают сходной четвертичной структурой и что их соответствующие субъединицы гомологичны.

Таблица2.7. Аминокислотный состав полипептидных цепей легумина вики и эдестина конопли (в г на 100 г белка)

Аминокислота Основные цепи Кислые цепи
Эдестин Легумин Эдитин В-цепь легумина С-цепь легумина
Аспарагиновая 12,2 12,1 11,9 12,3 8,4
Треонин 3,8 3,7 3,0 2,1 2,5
Серии 4,5 4,7 5,1 4,1 5,2
Глутаминовая 13,0 10,2 21,6 19,8 23,7
Пролин 3,2 4,1 3,0 3,8 5,4
Глицин 3,1 2,9 4,2 3,6 3,0
Алании 5,5 5,9 3,3 3,1 1,9
Валин 7,0 7,2 5,1 2,8 2,7
Метионин 2,9 0,5 1,5 1,0 0,1
Изолейцин 4,5 3,7 4,9 4,6 4,2
Лейцин 7,9 9,5 6,2 5,5 5,9
Тирозин 4,4 4,2 4,0 4,0 2,2
Фенил аланин 6,1 4,3 4,5 4,5 3,4
Лизин 3,5 4,4 1,9 3,8
Гистидин 2,0 1,8 2,6 2,7 3,3
Аргинин 13,3 10,8 15,3 12,2 9,4
Цистин 02 0,9 0,8 1,1 0,9 0,8
Триптофан 1,4 1,6 0,9 1,8 2,0

Запасные 7S белки изучены значительно меньше, чем 11S белки. Известно, что эта фракция вики, гороха, сои и арахиса также диссоциирует на субъединицы. Так, у 7S белков вики и сои конечными продуктами диссоциации являются 2S субъединицы, промежуточными - 4S субъединицы. Для указанных видов субъединиц получены значения молекулярных масс, соответственно, 31-33 кД и 84 кД. Учитывая молекулярные массы 7S белка вики (186-193 кД) и сои (180-193 кД), приходят к выводу, что молекулы 7S белков состоят из шести 2S субъединиц, a 4S субъединицы являются "полумолекулами" 7S субъединиц. Таким образом, обнаруживается сходство четвертичных структур 7S и 11S белков глобулиновой фракции бобовых. 2S субъединицы 7S белков между собой не идентичны.

В последние годы накапливается все больше сведений о существенном значении четвертичной структуры в регулировании процесса гидролиза запасных белков при прорастании. Еще классическими работами Д. Прянишникова (1939) показано, что такие белки при прорастании семян распадаются на низкомолекулярные соединения. Позже было высказано предположение, что гидролиз запасных белков предшествует их диссоциации на субъединицы (В. Кретович, 1960). Предположение экспериментально подтверждено, и, более того, сейчас известно, что диссоциация белков сопровождается предварительным дезамидированием остатков аминокислот, накоплением мочевины и протеканием ряда других процессов, облегчающих эту диссоциацию.

Белковый комплекс суммарных глобулинов различных видов бобовых характеризуется отличиями в растворимости, хроматографическом, электрофоретическом и аминокислотном составах. Эти данные используются в селекционно-генетических работах для выведения новых сортов растений с заданным количеством незаменимых аминокислот.

Среди бобовых культур в качестве источника пищевого биологически ценного белка наибольшее значение имеют семена сои. С их использованием организовано производство соевой муки (обезжиренной, полужирной и необезжиренной), концентратов и изолятов. Данные об аминокислотном составе и количестве суммарного белка в продуктах из бобов сои приведены в табл. 2.8.

Наряду с белками, обладающими питательной ценностью, в состав бобовых культур входят антиалиментарные соединения, имеющие также белковую природу. Они понижают питательную ценность белковых продуктов и пищевых изделий. К таким соединениям относятся ингибиторы протеаз желудочно-кишечного тракта и лектины.

В семенах сои содержится не менее пяти ингибиторов трипсина в количестве 5-10% от общего содержания белка. Наиболее хорошо изучены ингибитор Кунитца, на долю которого приходится 90% общей

Таблица 2.8.Аминокислотный состав и количество суммарного белка в продуктах из бобов сои

Характеристика Продукт
Соевые бобы Обезжиренная соевая мука Концентраты сои Изоляты сои
Содержание белка, % на с.в. 39,6 57,0 68,0 91,0
Содержание аминокислот, г на 100 г белка:        
лизин 6,5 6,3 6,3 6,0
метионин + цистин 1,3 2,9 2,8 2,2
треонин 4,6 4,0 4,3 3,5
лейцин 8,5 7,7 7,9 7,8
изолейцин 5,2 4,4 4,6 4,5
фенилаланин + тирозин 5,2 8,6 8,9 8,7
валин 5,6 4,8 4,8 4,6
триптофан 0,8 1,4 1,5 1,2

активности ингибиторов, и Баумана-Бирк. Ингибиторы представляют собой белковые молекулы с молекулярными массами 21,5 и 8 кД, соответственно. Для них расшифрована первичная структура. Так, самый высокомолекулярный - ингибитор Кунитца - имеет в своем составе 181 остаток аминокислот и две дисульфидные связи. Расщепление одной из них не влияет на активность ингибитора, тогда как одновременное восстановление двух связей приводит к получению неактивного продукта.

Понижение активности ферментов белковыми ингибиторами связано с образованием устойчивых белок-белковых комплексов, содержащих молекулу ингибитора и одну или несколько молекул фермента. Имеются доказательства о существовании в белках-ингибиторах "активного" участка, вступающего во взаимодействие с активным центром фермента. В состав всех ингибиторов трипсина входят, расположенные в пространстве особым образом, остатки лизина или аргинина. Белковые ингибиторы различаются по специфичности, выражающейся в неодинаковой способности подавлять активность различных ферментов. Так, ингибитор Кунитца из сои подавляет активность трипсина и фермента крови плазмина, но слабо ингибирует химотрипсин, а ингибитор Баумана-Бирк снижает активность не только трипсина, но и химотрипсина. Являясь "двухцентровым" ингибитором, ингибитор Баумана-Бирк одновременно вступает в реакцию с двумя молекулами

различных ферментов и не может связывать две молекулы одного фермента.

В технологических процессах производства белковых продуктов из сои предусматривается инактивация ингибиторов протеиназ обработкой паром, микроволновым нагревом, вымачиванием с последующим кипячением и другими способами. Инактивация ингибиторов трипсина на 80- 90% по сравнению с их активностью в исходном сырье уже позволяет отнести белковые продукты к пищевым, не обладающим отрицательным воздействием на организм.

Лектины (от лат. - "выбирать") - это гликопротеины растительного происхождения, связывающие один или несколько специфических Сахаров. Свое название они получили от избирательной способности вызывать агглютинацию (агрегацию, склеивание) эритроцитов крови, клеток, бактерий. Агглютинация происходит путем взаимодействия лектинов с углеводными компонентами поверхности клеток. Так, лектин соевых белков, например, специфичен к остаткам галактозы и N-ацетилгалактозамина, а агглютинин зародышей пшеницы - к остаткам N-ацетилглюкозамина и N-ацетилнейраминовой кислоты. На долю лектинов в бобовых культурах приходится от 2 до 10% общего белка. В очищенном виде лектины широко используются для определения группы крови, очистки гликопротеинов и в качестве средств для изучения поверхностей здоровых и больных клеток, лишенных некоторых ферментов синтеза олигосахаридов. Как связывающие специфические сахара, лектины используются в качестве зондов для "узнавания" Сахаров на мембранах клеточной поверхности здоровых и раковых клеток. Агглютинация раковых клеток требует меньше лектинов, чем здоровых.

Отсутствие высокой активности лектинов, как и ингибиторов ферментов, в белковых продуктах из бобовых является одним из санитарно-гигиенических требований, предусматриваемых сертификацией для использования их в хлебопечении, кондитерской и других отраслях промышленности в целях повышения пищевой ценности изделий. Снижение активности лектинов достигается применением более мягких условий, чем снижение активности ингибиторов ферментов - нагреванием при 80°С.

Некоторые виды белковых продуктов из сои, энзиматически активная соевая мука содержат ферменты: липоксигеназу и р-амилазу. Липок-сигеназа принимает участие в процессах отбеливания пшеничной муки и стабилизации теста хлебобулочных изделий, а (З-амилаза, являясь более термостабильной, чем пшеничная, долго сохраняет активность на ранних стадиях приготовления хлеба, позволяя интенсифицировать процесс газообразования в тесте и улучшать качество хлеба.

66 :: 67 :: 68 :: 69 :: 70 :: 71 :: 72 :: Содержание

72 :: 73 :: 74 :: 75 :: 76 :: Содержание

Белки масличных культур