что и требовалось доказать.

Определение. Точка A2 называется симметричной точ-

Ке A1 относительно окружности w с центром O и радиу-

сом R, если точка A2 лежит на луче OA1 и OA1 ·OA2 =R2

.

O A1 A2

w

Рис. 1

Из определения непосредственно сле-

Дуют следующие утверждения.

Для каждой точки плоскости, кро-

Ме центра O, существует единственная

Точка, симметричная ей относительно

Окружности w.

Для центра O симметричной точки

Не существует.

Если точка A2 симметрична точ-

Ке A1 относительно окружности w, то и точка A1 симметрич-

На точке A2 относительно окружности w.

Каждая точка, лежащая на окружности w, симметрична

Сама себе.

Если A1 и A2 — различные симметричные точки, то

Одна из них лежит внутри окружности w, а другая—снаружи.

Утверждение. Пусть точка A лежит снаружи окружности

W с центром O, AM и AN— касательные к окружности w,

Прямые OA и MN пересекаются в точке B. Тогда точки A

и B симметричны относительно окружности w (рис. 4).

Доказательство этого утверждения совсем не сложно.

O

M

N

B A

w

Рис. 4

O

M

N

P

K

B A

w

Рис. 5

Из подобия прямоугольных треугольников OMA и OBM

следует пропорция OM/OB=OA/OM, или OA·OB=OM2

,

что и требовалось доказать.

Определение инверсии – симметрии относительно окружности.

Определение 1. Углом между двумя окружностями называется угол между касательными к окружностям в точке их пересечения.

Если окружности не имеют общих точек, то угол между ними не определен.

Определение 2. Углом между окружностью S и прямой l называется угол между прямойl и касательной к окружности S в точке пересечения этой окружности с l.

Опять же, если прямая и окружность не имеют общих точек, то угол между ними не определен.

Из определения 2 следует, что окружности, центры которых лежат на данной прямой l, и только эти окружности, перпендикулярны к прямой l.

Теорема 1. Все окружности, перпендикулярные прямой l и проходящие через точку А, проходят и через точку В, симметричную точке А относительно прямой l.

Рассмотрим произвольную окружность с центром на прямой l, проходящую через точку А. Введем систему координат таким образом, что прямая l является действительной осью, а начало координат располагается в центре нашей окружности, и радиус ее равен 1.

Действительная ось имеет уравнение , и формула осевой симметрии относительно lбудет . Окружность имеет уравнение .

Если точка А имеет координату а, то симметричная ей точка В будет иметь координату . Докажем, что она тоже лежит на окружности.

Действительно, поскольку А ей принадлежит, то , что и означает принадлежность точкиВ() этой окружности.

Определение3. Точки А и В называются симметричными относительно прямой l, если все окружности, перпендикулярные прямой l и проходящие через точку А, проходят и через точку В.

Введем теперь понятие симметрии относительно окружности. Докажем сначала следующую теорему.

Теорема 2. Все окружности, перпендикулярные данной окружности и проходящие через данную точку А, не лежащую на , проходят одновременно и через некоторую точку В, отличную от точки А.

Рассмотрим некоторую окружность w, удовлетворяющую нашим условиям.

Введем систему координат таким образом, что начало координат располагается в центре окружности и радиус ее равен 1, а точка А лежит на действительной оси.

Тогда задается уравнением , w задается уравнением , где s – координата центра, r – радиус. Перпендикулярность окружностей дает равенство . Раз А лежит на w, то верно , а с учетом предыдущего равенства .

Точка А, по условию, не лежит на окружности , и А лежит на действительной оси, поэтому и , то есть , откуда . Последнее число, очевидно, тоже является действительным. Тогда докажем, что точка с координатой лежит на w, то есть верно . Но это равносильно , или , что верно. Значит, точка с координатой лежит на w. Так как она отлична от точки А, а окружность w бралась произвольно, то мы нашли другую общую точку всех наших окружностей, что и требовалось.

Определение 6. Обобщенной инверсией плоскости с центром в точке S и степенью инверсии k называется преобразование, которое всякую точку М плоскости, отличную от S, отображает в такую точку М’, что точки S, M и М’ коллинеарны и скалярное произведение векторов . При этом считают, что S переходит в бесконечно удаленную область, и наоборот.

Это преобразование инволютивное, поскольку точки М и М’ входят в формулу равноправно, а для центра инверсии и бесконечно удаленной области все очевидно.

Формула инверсии в комплексно сопряженных координатах. Найдем формулу обобщенной инверсии при задании точек комплексными числами. Пусть точкам S, M и М’ соответствуют комплексные числа s, z и z’.

По формуле скалярного произведения векторов . Коллинеарность точек S, M и М’ дает равенство . Отсюда имеем Û , откуда и получаем искомую формулу .

Итак, обобщенная инверсия имеет формулу или, что то же самое, . При k>0 получаем инверсию с положительной степенью, при k<0 – с отрицательной.

Но всякое ли преобразование плоскости, заданное формулой , является обобщенной инверсией? Если принять , , то достаточно потребовать, чтобы и для обобщенной и для обычной инверсии (с положительной степенью).

Значит, всякое преобразование плоскости, задаваемой формулой , есть обобщенная инверсия.

Неподвижные точки и окружность инверсии. Исследуем уравнение инверсии на неподвижные точки: для них должно выполняться равенство Û . Мы не рассматриваем центр инверсии и бесконечно удаленную область, так как мы доопределили, что они не остаются неподвижными, а переходят друг в друга. Тогда будет выполняться равенство .

Очевидно, что если , то все искомые точки образуют окружность с центром в точке с координатой s и радиусом . Эта окружность при называется окружностью инверсии. Если обозначить радиус окружности инверсии через R, то выполняется . И формулу инверсии для k>0 можно переписать более наглядно: .

Если степень инверсии отрицательна, то преобразование не имеет неподвижных точек (поскольку невозможно изобразить на плоскости, даже комплексной, точки, координаты которых удовлетворяют равенству ). Но иногда эту мнимую окружность также называют окружностью инверсии, ее центр расположен в центре инверсии, а радиус будет равен ==.

Так как , то, очевидно, инверсию отрицательной степени легко представить в виде коммутативной композиции инверсии с положительной степенью и центральной симметрии с общим центром в s.

Свойства обобщенной инверсии.

1º. При обобщенной инверсии с центром О и степенью k внутренние точки окружности(О,) (окружность инверсии, если k положительно) переходят во внешние и наоборот (поэтому говорят также о зеркальном отображении относительно окружности).

Для центра инверсии и бесконечно удаленной области это очевидно. Для остальных точек при инверсии с положительной степенью это было доказано выше, в теореме 2. А так как инверсию с отрицательной степенью можно представить как коммутативную композицию инверсии с положительной степенью и центральной симметрии с центром в начале инверсии, то и для нее все очевидно.

2º. Преобразование плоскости, представляющее собой последовательно выполненную дважды одну и ту же инверсию, есть тождественное преобразование

Следует из инволютивности преобразования инверсии.

3º. Две фигуры, инверсные третьей фигуре относительно одного и того же центра О, гомотетичны.

Действительно, пусть М – точка фигуры F, М1 и М2 – точки, соответствующие ей в двух инверсиях с общим центром О и коэффициентами k1 и k2. Без ограничения общности рассуждений можно рассмотреть инверсию с центром в начале координат. Тогда, если точки М, М1 и М2 будут иметь координаты m, m1 и m2 соответственно, то , . Замечаем, что вторая точка получена из первой при гомотетии с уравнением .

Мы видим, что выбор степени инверсии не влияет на форму полученных фигур. Эта форма изменяется только при изменении центра инверсии.

4º. Зависимость расстояния между образами A’ и B’ двух точек А и В от расстояния между этими точками при инверсии с центром S и степенью k выражается в формуле .

Инверсия задается формулой . Тогда . Отсюда = = =. А это и означает .

5º. Инверсия сохраняет величину угла между окружностями, а также между окружностью и прямой, между двумя прямыми, но изменяет его ориентацию на противоположную.

Следствие 1. Инверсия сохраняет двойное отношение расстояний между точками, каждая из которых не совпадает с центром инверсии и с бесконечно удаленной точкой.

Заметим, что . Из этого следует, что инверсия сохраняет двойное отношение расстояний между точками, каждая из которых не совпадает с центром инверсии и с бесконечно удаленной точкой.

Для иных наборов точек это утверждение, вообще говоря, неверно. Например, будем предполагать, что все четыре точки различны. Если центр инверсии совпадает, скажем, с точкой А, то, при неравенстве остальных точек бесконечно удаленной, получаем отношение , не имеющее смысла. Если же А совпадает с бесконечно удаленной точкой, то получим - тоже нет смысла.

Следствие 2. Две точки и их образы при инверсии лежат на одной окружности или одной прямой.

Не ограничивая общности рассуждений, рассмотрим инверсию . Пусть точки А(a) иВ(b) переходят при инверсии в точки А’(a’) и В’(b’). Тогда координаты образов будут и соответственно. Если двойное отношение их вещественно, то все доказано.

, то есть они действительно лежат или на одной окружности, или на одной прямой.

Чтобы они лежали на прямой, нужно потребовать, чтобы точки А и В были коллинеарны с центром инверсии, причем каждая из точек даже может совпадать с центром инверсии или бесконечно удаленной точкой.

Следствие 3. Касающиеся окружности или касающиеся окружность и прямая переходят при инверсии в касающиеся окружности или касающиеся окружность и прямую, если только точка касания не совпадает с центром инверсии, иначе они переходят в параллельные прямые.

Угол между касающимися окружностью и прямой или касающимися окружностями равен 0º. Если точка касания не совпадает с центром инверсии, то окружности переходят в две окружности, если центр инверсии не на одной из окружностей, в противном случае в окружность и прямую. Угол сохраняется, значит, все верно.

Если же точка касания совпадает с центром инверсии, то окружность переходит в прямую, не проходящую через центр инверсии, а прямая переходит сама в себя. Угол между прямыми сохраняется и равен 0º, то есть они действительно параллельны.

Определение 7. Прямая называется касательной к кривой в точке М0, если для произвольной точки кривой М расстояние от М до прямой стремится к нулю быстрее, чем от М до М0, когда M® М0, то есть , где Р – это проекция точки М на прямую.

Определение 8. Окружность называется касательной к кривой в точке М0, если касательная к окружности в этой точке является и касательной к кривой в этой точке.

Определение 9. Углом между двумя кривыми в их общей точке называется угол между касательными к этим кривым в рассматриваемой точке.

Если кривые не имеют общих точек, или хотя бы одна из них не имеет касательной в общей точке, то угол между кривыми не определен.

Очевидно, что угол между двумя кривыми в их общей точке также можно определить как угол между касательными окружностями (касательной окружностью и прямой) к этим кривым в рассматриваемой точке.

Определение 10. Всякое преобразование, при котором сохраняются углы между кривыми, называется конформным преобразованием.

Следствие 4. Инверсия есть конформное преобразование.

Следствие 5. Четное число инверсий не меняет угла между кривыми, нечетное число меняет направление угла на противоположное.

6º. Каждые две окружности или прямую и окружность можно при помощи инверсии перевести в две прямые (пересекающиеся или параллельные) или в две концентрические окружности.

Если данные окружности или окружность и прямая касаются, то при центре инверсии в точке касания переходят в две параллельные прямые (следствие 4).

7º. При инверсии с центром sI и степенью k окружность с центром s радиуса r, не совпадающая с окружностью инверсии (если степень положительна), отображается в себя тогда и только тогда, когда выполняется равенство .

 

Применение инверсии при решении задач на построение. Метод инверсии дает возможность решить ряд наиболее трудных конструктивных задач элементарной геометрии. При этом его комбинация с методом координат, что фактически происходит при попытке решать задачу на комплексной плоскости, дает наиболее точные вычисления местонахождения нужных фигур, что является явным плюсом метода по сравнению с довольно неточными построениями от руки. Недостатком же этого метода является его громоздкость, связанная с необходимостью выполнить большое число довольно объемных вычислений. Но надо сказать, что для компьютера это не является трудностью, и перед пользователем встает лишь проблема перевода алгоритма решения задачи на язык программирования.

 

Задача 1. Даны точка К и две прямые АВ и ВС. Провести секущую KXY так, чтобы , где с– данная длина.

Искомые точки X и Y инверсны друг другу при инверсии с центром в точке К и степенью с2. Точка Y есть пересечение прямой ВА с кривой, обратной ВС. Это будет окружность, проходящая через центр инверсии, то есть через точку К. Найдем ее уравнение.

Передвинем систему координат таким образом, что точка К является началом координат (это будет параллельный перенос на вектор ОК с формулой , где r - координата точки К), тогда уравнение прямых ВС и АВ можно записать как и , поскольку они не проходят через точку К. Уравнение инверсии примет вид .

Образ прямой ВС при инверсии будет , или, после упрощений, . Тогда координата искомой точки Y находится из системы: преобразовав которую, получаем систему

Вычислив корни первого уравнения, подставляем их во второе. Если подойдут, это решение. Таким образом, может быть 2, 1 или 0 решений.

Чтобы перевести координату Y в исходную систему координат, прибавляем к полученной координате настоящую координату К.

Теперь по двум точкам – Y и К – пишем уравнение искомой прямой: .

Применение инверсии при доказательстве. Здесь снова используется тот факт, что зависимость данных и искомых в отображенной фигуре часто гораздо проще, чем в основной фигуре. Замечательно, если в задаче фигурирует окружность: метод дает возможность заменять фигуры, содержащие окружности, более простыми фигурами.

Теорема Птолемея. Для всякого четырехугольника ABCD, вписанного в окружность, верно .

Пусть точки A, B, C, D имеют координаты a, b, c, d соответственно.

Примем А за центр инверсии, и пусть степень инверсии равна 1. При этом окружность переходит в прямую. На этой прямой лежат образы точек B, C, D – точки B’, C’, D’, причем порядок точек сохраняется, поскольку по след 5 сохраняется двойное отношение точек В, В, С, D, а это есть простое отношение трех точек В, С, D. По свойству 3 можно записать: , и .

Из-за сохранения порядка точек верно , то есть . Приведем к общему знаменателю: . Это и означает, что .

Обратная теорема. Если для четырех неколлинеарных точек A, B, C, D верно , то они лежат на одной окружности.

Равенство можно записать как . Ни одна из точек B, C, D не совпадает с А, так как иначе будет коллинеарность. Тогда это равносильно равенству . Получим при инверсии с центром А и степенью 1. Это значит, что B’, C’, D’ должны лежать на одной прямой и центр инверсии – точка А. При этой инверсии прямая могла быть переведена или из прямой, или из окружности. Никакая другая кривая не могла быть прообразом этой прямой, так как, по инволютивности, эта прямая есть также прообраз этой кривой при той же самой инверсии, то есть эта кривая – окружность или прямая, третьего не дано.

Если это прямая, то она та же самая, и центр инверсии на ней. То есть все точки лежат на одной прямой. Противоречие условию теоремы. Значит, это была не прямая, а окружность. На ней лежат точки B, C, D. Но раз прямая переводится в окружность, то центр инверсии, то есть точка А, расположен на этой окружности.

 

Библиографический список

1. Адамар, Ж. Элементарная геометрия [Электронный ресурс]: пособие для высших педагогических учебных заведений и преподавателей средней школы. В 2 ч. Ч. 1. Планиметрия / акад. Ж. Адамар; пер. со 2 издания под ред. проф. Д. И. Перепелкина. – Изд. 3-е. – М.: Учпедгиз, 1948. – 608 с. Режим доступа: #"#_ftnref1" name="_ftn1" title="">[1] Идея этого пункта рассмотрена в [5].

[2] Эти свойства сформулированы в виде фактов и теорем в источниках [1], [2], [3], [4], [5].

[3] Условия взаимного расположения окружностей даны в источнике [3] на с.88.

 

Основная лемма. Пусть A1, A2 и B1, B2 — пары раз-

личных точек, симметричных относительно окружности w

с центром O. Тогда OA1B1=OB2A2 (рис. 8).

A1

A2

B1

B2

O

w

Рис. 8

Доказательство. По определению симметричных точек

OA1 ·OA2 =R2=OB1 ·OB2, следовательно,

OA1

OB1

=

OB2

OA2

.

Из пропорциональности сторон следует подобие треуголь-

ников OA1B1 и OA2B2 по двум сторонам и углу между

ними. Из подобия треугольников следует равенство углов:

OA1B1=OB2A2.

8Равенство этих углов также означает, что четырёхуголь-

ник A1A2B2B1 вписанный, или, другими словами, все

четыре точки лежат на одной окружности.