Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

анализ напряженно-деформированного состояния в точке тела

Раздел 12

 

I. Объемное напряженное состояние

1. Полное, нормальное и касательное напряжения на наклонной площадке

На рис. 11.3 показаны компоненты полного напряжения на наклонной площадке . Очевидно, что его численное значение определяется так

Подставляя сюда формулы (11.4) найдем

(12.1)

Здесь и – направляющие конусы нормали к площадке . Полное напряжение можно разложить на нормальное и касательное напряжения на наклонной площадке. Очевидно, что . Напряжение можно найти, проектируя и на нормаль , т.е. . С учетом формул (11.4) получим

(12.2)

Касательное напряжение можно найти так

(12.3)

 

2. Главные напряжения, главные площадки

На наклонной площадке, у которой орт нормали совпадает с направлением , величина , а будет экстремально и равно . Такая площадка называется главной (ее направление определяют направляющие косинусы, которые обозначим ). А напряжения на ней обозначим . Все его проекции на оси будут . Подставим их в формулы (11.4)

или (1)

Надо найти и при известных напряжениях в точке тела .

Очевидно, что .

Из этого следует, что одновременно не могут быть равны нулю. Тогда система уравнений (1) имеет решение, если ее определитель , т.е.

(3)

Раскрывая этот определитель получим, с учетом закона парности касательных напряжений:

(4)

(5)

После перемножений и приведения подобных членов найдем

(12.4)

Где:

(12.5)

Величины и называются инвариантами тензора напряжений (легко убедится, что есть определитель ). При повороте осей компоненты меняются, но и при этом не должны меняться, т.к. , определяемые из (12.4), не зависят от выбора положения осей , а зависят от нагружения тела.

Решение кубического уравнения (12.4) дает три корня для , которые и называются главными напряжениями. Итак, имеем три главных напряжения, которые действуют на трех главных площадках, определяемых . Например, найдем главной площадки, где действует . Для этого составим три уравнения: и любых два уравнения из системы (1), подставляя в них . Решая эти три уравнения, найдем . Аналогично определяются две другие площадки, где действуют и . Можно показать, что главные площадки взаимно ортогональны.

Инварианты напряженного состояния через главные напряжения определяются с учетом (12.5) так:

Здесь учтено, что на главных площадках нет касательных напряжений.

 

3. Экстремальные касательные напряжения

Вырежем из тела малый тетраэдр, у которого координатные оси совпадают с направлениями главных напряжений, т.е. на невидимых площадках действуют только и (см. рис. 11.3). Найдем касательное напряжение на наклонной площадке с ортом .

Полное напряжение на ней и нормальное получим из зависимостей (12.1) и (12.2), полагая в них: , , т.к. на главных площадках касательных напряжений нет

(6)

Касательные напряжения на наклонной площадке найдем по (12.3), подстановкой (6)

После преобразований, получим

(7)

Условие экстремальности по параметрам и дает три решения, которые определяют три площадки с экстремальными :

  Третьему решению соответствуют рис.а, т.е. это площадка под углами 45° к осям с и и проходящая через ось 3. Подставляя и в выражение (7), получим Рис.а

Окончательно

(8)

Аналогично, на площадках с решениями 1) и 2), можно найти экстремальные и .

Итак, имеем три площадки, на которых действуют экстремальные касательные напряжения:

(12.6)

 

4. Октаэдрические нормальные и касательные напряжения

Площадки, равнонаклоненные к направлениям главных напряжений, называются октаэдрическими, направляющие косинусы их , т.к. должно быть .

Нормальное напряжение и касательное на этой площадке через главные напряжения найдем по формулам (6) и (7) подстановкой

(12.7)

Рис.в Величину называют часто гидростатическим давлением. С т.О на рис. В обозначена октаэдрическая площадка с и , заштрихованы главные площадки с и показаны три площадки с экстремальными касательными напряжениями и . Легко показать, что , следовательно, и тоже

являются инвариантами по отношению к преобразованию координатных осей.

 

II. Плоское напряженное состояние

а) Полное, нормальное и касательное напряжения на наклонных площадках

sx
tyx
x
y
r
t
txy
s
sy
a

Рис. 12.1

Плоское напряженное состояние (ПНС) является частным случаем объемного, когда отсутствуют все напряжения на площадках, перпендикулярных к одной из координатных осей. Пусть отсутствуют напряжения на площадках, перпендикулярных к оси , т.е. (9) Получим ПНС в осях , показанное на рис. 12.1.

На наклонной площадке действует полное напряжение , которое можно разложить:

1. на составляющие по осям и , т.е. на и ;

2. на нормальное и касательное напряжения.

Очевидно: (10)

Как и в объемном напряженном состоянии, положение площадки определим так (см. рис. 12.1):

(11)

Напряжения и здесь определяются из уравнений (11.4), подставляя в них (9) и

(12.7)

Здесь .

Уравнения (12.7) легко получить из условий равновесия треугольного элемента, показанного на рис.12.1 Определим площадки элемента:

(13)

Умножая напряжения на площадки, составим уравнения статики

Подставляя (13) и сокращая на , получим формулы (12.7). Нормальное напряжение найдем, проектируя и на нормаль к площадке (см.рис. 12.1)

Подставляем (12.7), получим:

Подставляя (11) и учитывая, что , найдем

(12.8)

Касательное напряжение определим, проектируя и на направление (см. рис. 12.1)

Подставим (11) и учитывая, что , окончательно получим

(12.9)

в) Главные напряжения, главные площадки

Здесь, как и в объемном напряженном состоянии, имеются главные площадки с направляющими косинусами и , на которых нормальные напряжения экстремальны и они называются главными напряжениями , а касательные напряжения отсутствуют. Поэтому здесь . Подставляя это в формулы (12.7) получим

(14)

Известно, что , поэтому уравнения (14) имеют решение, если его определитель

Раскроем этот определитель

(15)

Здесь инварианты ПНС.

Решение квадратного уравнения (15) дает два корня и , которые и называют главными напряжениями в ПНС:

Окончательно получим для (знак (+)) и (знак (–)):

(12.10)

Положение главных площадок, где действуют и в ПНС удобно определять углами , которые нормали к главным площадкам составляют с осью . Их легко определить из условия отсутствия на главных площадках касательных напряжений. Подставляя и в (12.9) получим

откуда

(12.11)

Из (12.11) получим два значения , одно , другое , которые определяют две взаимно ортогональные главные площадки. и откладывать от оси против хода часовой стрелки.

Чтобы не выяснять, на каких площадках действуют и , надо подставить и в формулу (12.8), большая величина , а меньшая . Эти величины и должно быть равны величинам, вычисленным по (12.10).

 

с) Экстремальные касательные напряжения

Рис.с Вырежем из тела, испытывающего ПНС, прямоугольный элемент с главными площадками, на которых действуют и . Выделим наклонную площадку ab, нормаль к которой с направлением составляет угол . Напряжения и на этой площадке найдем по зависимостям (12.8) и (12.9), полагая .

(16)

Из второй формулы (16) видно, что при

(12.12)

Подставляя сюда и из формулы (12.10), получим

(12.13)

Итак, экстремальные касательные напряжения действуют на площадках под углом 45° к главным и определяются по формулам (12.12) или (12.13).

Нормальные напряжения на этих площадках найдем по первой формуле (16), подставляя ( )

(17)

Здесь учтено, что .

 

d) Чистый сдвиг

Рассмотрим частный случай ПНС, когда главные напряжения .

В этом случае экстремальные найдем по (12.12), а нормальные напряжения на этих площадках по (17). Итак

Такой случай носит название чистый сдвиг.

 

 

Рис. d Вырежем из тела прямоугольный элемент, испытывающий чистый сдвиг, т.е. по его граням действуют только . Найдем нормальное напряжение и касательное на наклонной площадке под углом (рис. d). Используя формулы (12.8) и (12.9), подставляя в них: , . Получим (12.14)

Из этих формул видно, что при , а это как известно, характеристики главной площадки.

Итак, при чистом сдвиге главные площадки расположены под углом 45° к площадкам чистого сдвига, а главные напряжения на них:

(при )

 

III. Анализ деформированного состояния

Тензор деформации представим в симметричном виде (см. рис), когда и т.д. Анализ деформиро-ванного состояния проведем по аналогии с  

вышеприведенным анализом напряженного состояния. Три взаимно ортогональных направления, сдвиги между которыми при деформации тела равны нулю, называются главными деформациями и обозначаются .

Главные деформации находятся из уравнения, аналогичного уравнению (12.4) для определения главных напряжений

(12.15)

Здесь и инварианты деформированного состояния:

(12.16)

Решение кубического уравнения (12.15) дает три величины главных деформаций .

В случае плоской деформации, когда, например, по аналогии с ПНС, формулы (12.10), получим и

(12.17)

Экстремальные сдвиги находятся по формулам, аналогичным (12.6) для определения экстремальных касательных напряжений

(12.18)

Для изотропных материалов направления главных деформаций совпадает с направлениями главных напряжений.

Выясним физический смысл инварианта : Рассмотрим кубик, у которого ребра совпадают с направлениями главных деформаций и до нагружения тела их длины равны 1. Его объем . После деформации его объем станет . Относительное изменение объема обозначим

Деформации малы, поэтому величины второго и третьего порядка малости можно не учитывать, тогда

(12.19)

Итак, первый инвариант деформированного состояния определяет относительное изменение объема тела.

Октоэдрический сдвиг, по аналогии с (12.7) – октаэдрических касательных напряжений, определяется так

(12.20)

Последняя формула получена с учетом (12.18)