Миноры и алгебраические дополнения.

Определение. Если в определителе n-го порядка выбрать произвольно pстрок и pстолбцов (p < n), то элементы, находящиеся на пересечении этих строк и столбцов, образуют матрицу порядка .

Определитель этой матрицы называется минором исходного определителя. Например, рассмотрим определитель :

Из строк и столбцов с чётными номерами построим матрицу:

Определитель

называется минором определителя . Получили минор второго порядка. Ясно, что из
можно построить различные миноры первого, второго и третьего порядка.

Если взять элемент и вычеркнуть в определителе строку и столбец, на пересечении которых он стоит, то получим минор, называемый минором элемента , который обозначим через :

.

Если минор умножить на , где 3 + 2 – сумма номеров строки и столбца, на пересечении которых стоит элемент то полученное произведение называется алгебраическим дополнением элемента и обозначается ,

т.е.

Вообще, минор элемента будем обозначать , а алгебраическое дополнение ,

причём

(4)

Для примера вычислим алгебраические дополнения элементов и определителя третьего порядка :

По формуле (4) получим

 

Для вычисления определителя n-го порядка полезно знать следующую теорему: определитель равен сумме произведений элементов какой-либо строки на их алгебраические дополнения, т.е.

(i = 1, 2, ..., n)

 

№15

Система m линейных алгебраических уравнений с n неизвестными (или, линейная система, также употребляется аббревиатура СЛА́У) в линейной алгебре — это система уравнений вида

(1)

Система линейных уравнений от трёх переменных определяет наборплоскостей. Точка пересечения является решением.

Здесь — количество уравнений, а — количество неизвестных. x1, x2, …, xn — неизвестные, которые надо определить. a11,a12, …, amn — коэффициенты системы — и b1, b2, … bm — свободные члены — предполагаются известными[1]. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно[2].

Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе — неоднородной.

Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы (1) — совокупность n чисел c1, c2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все её уравнения в тождества.

Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c1(1), c2(1), …, cn(1) и c1(2), c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:

c1(1) = c1(2), c2(1) = c2(2), …, cn(1) = cn(2).

Совместная система вида (1) называется определённой, если она имеет единственное решение; если же у неё есть хотя бы два различных решения, то она называетсянеопределённой. Если уравнений больше, чем неизвестных, она называется переопределённой.

 

Матричная форма

Система линейных уравнений может быть представлена в матричной форме как:

или:

.

Здесь — это матрица системы, — столбец неизвестных, а — столбец свободных членов. Если к матрице приписать справа столбец свободных членов, то получившаяся матрица называется расширенной.