Основные теоретические положения. Освещение –необходимый фактор не только для нормального функционирования организма человека, но и для осуществления любых видов работ

Освещение –необходимый фактор не только для нормального функционирования организма человека, но и для осуществления любых видов работ. Зрение является важнейшим источником получения информации, поступающей в мозг человека из внешней среды. Правильная организация освещения обеспечивает хорошую видимость и создает благоприятные условия труда. Недостаточное освещение вызывает преждевременное утомление, притупляет внимание работающего, снижает производительность труда, ухудшает качественные показатели и может оказаться причиной возникновения травмоопасной ситуации или профессионального заболевания [1].

Правильно спроектированное и выполненное производственное освещение предназначено для решения следующих задач:

– предупреждения развития зрительного и общего утомления;

– повышения производительности труда и качества выпускаемой продук­ции;

– обеспечения психологического комфорта;

– повышения безопасности труда и снижения травматизма на произ­водстве.

Системы и виды освещения

Естественное – создается прямыми солнечными лучами и рассеянным светом небосвода и меняется в зависимости от географической широты, времени года, времени суток, степени облачности и прозрачности атмосферы. Конструктивно подразделяется на боковое – (одно- и двухстороннее), осуществляемое через световые проемы в наружных стенах; верхнее – через световые проемы в кровле и перекрытиях; комбинированное – сочетание верхнего и бокового освещения.

Искусственное применяется в часы суток, когда естественный свет недостаточен, или в помещениях, где он отсутствует, по конструктивному исполнению, может быть общее и комбинированное; по функциональному воздействию подразделяется на рабочее, аварийное, эвакуационное и охранное.

Системы общего освещения применяют в помещениях, где по всей площади выполняются однотипные работы (литейные, сварочные цеха), а также в административных и конторских помещениях, в классах и аудиториях учебных занятий.

Местное освещение применяют наряду с общим при выполнении точных зрительных работ, в местах, где оборудование создает глубокие резкие тени или рабочие поверхности расположены вертикально (штампы, гильотинные ножницы). Совокупность общего и местного освещения называется комбинированным. Применение одного местного освещения не допускается [10].

Рабочее освещение предназначено для обеспечения нормального выполнения производственного процесса, прохода людей, движения транспорта и является обязательным для всех производственных помещений.

Аварийное освещение применяют при внезапном отключении рабочего, если это может вызвать прекращение производственного процесса, взрыв, пожар, отравление людей и др. (min освещенность рабочих поверхностей должна составлять 5 % нормируемой освещенности, но не менее 2 лк).

Эвакуационное освещение применяют в проходных помещениях для эвакуации людей из производственных зданий с числом работающих более 50 человек (min освещенность на полу и ступеньках – 0,5 лк, на открытых территориях min – 0,2 лк).

Охранное устраивают вдоль границ территорий, охраняемых специальным персоналом (в ночное время min 0,5 лк).

Совмещенное – освещение, при котором недостаточное по нормам естественное освещение дополняется искусственным.

Совмещенное освещение производственных зданий следует предусматривать [10,11,12]:

для производственных помещений, в которых выполняются работы I–III разрядов;

для производственных и других помещений в случаях, когда по условиям технологии, организации производства или климата в месте строительства требуются объемно-планировочные решения, которые не позволяют обеспечить нормированное значение коэффициента естественной освещенности (КЕО) (многоэтажные здания большой ширины, одноэтажные многопролетные здания с пролетами большой ширины и т. п.), а также в случаях, когда технико-экономическая целесообразность совмещенного освещения по сравнению с естественным подтверждена соответствующими расчетами.

Источники искусственного света

В качестве источников искусственного освещения применяются лампы накаливания и газоразрядные лампы.

Лампа накаливания – источник света с излучателем в виде проволоки (нити или спирали) из тугоплавкого металла (обычно вольфрама), накаливаемой электрическим током до температуры, близкой к температуре плавления вольфрама. Световая отдача (отношение создаваемого лампой светового потока к потребляемой электрической мощности) лампы накаливания 1035 лм/Вт; срок службы до 2 тыс. ч. Эти лампы дают непрерывный спектр излучения с повышенной (по сравнению с естественным светом) интенсивностью в желто-красной области спектра. По конструкции лампы накаливания бывают вакуумные (НВ), газонаполненные (НГ), биспиральные (НБ), биспиральные с криптоно-ксеноновым наполнением (НБК). Имеются также зеркальные лампы, являющиеся лампами-светильниками.

Все большее распространение получают галогенные лампы накаливания. Наличие в колбе лампы паров галогенов (йода или брома), уменьшающих количество испарения вольфрама, позволило повысить температуру накала вольфрамовой нити, в результате чего световая отдача увеличивается до 40 лм/Вт и спектр излучаемого света приближается к естественному. Кроме того пары вольфрама, испаряющегося с нити накала, соединяются с йодом и вновь оседают на нить, препятствуя ее истощению.

Недостатки ламп накаливания [10]:

– низкая световая отдача (в три–шесть раз меньше, чем у газоразрядных ламп);

– относительно малый срок службы;

– зависимость световой отдачи и срока службы от напряжения;

– цветовая температура лежит в пределах 2 300–2 900 K (преобладают желтые и красные лучи, что искажает цветопередачу, поэтому их не применяют при работах, требующих различения цветов);

– световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности, потребляемой от электрической сети, весьма мал и не превышает 4 %;

– температура колбы галогенных ламп может достигать 500 °С, поэтому при установке ламп следует соблюдать нормы противопожарной безопасности (например, обеспечить достаточное расстояние между поверхностью перекрытия и подвесным потолком);

– обладают большой яркостью, но не дают равномерного распределения светового потока, для исключения прямого попадания света в глаза и вредного воздействия большой яркости на зрение нить накаливания лампы необходимо закрывать;

– при применении открытых ламп почти половина светового потока не используется для освещения рабочих поверхностей, поэтому ЛН необходимо устанавливать в осветительной арматуре.

В промышленности они находят применение для организации местного освещения.

В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу, во многих странах введен или планируется ввод запрета на производство, закупку и импорт ламп накаливания, с целью стимулирования замены их на энергосберегающие лампы (компактные люминесцентные лампы и др.).

23 ноября 2009 г. президент России подписал принятый ранее Госдумой закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации». Согласно документу, с 1 января 2011 г. к обороту на территории страны не допускается продажа электрических ламп накаливания мощностью 100 Вт и более; с 1 января 2013 г. – электроламп мощностью 75 Вт и более, а с 1 января 2014 г. – ламп мощностью 25 Вт и более [10].

Наибольшее применение в промышленности находят газоразрядные лампы низкого и высокого давления. Основным преимуществом газоразрядных ламп является их экономичность. Световая отдача этих ламп колеблется в пределах 40...110 лм/Вт. Срок их службы доходит до 12 тыс. ч. С их помощью легче создать равномерное освещение, спектр их излучения ближе к естественному свету.

Газоразрядные лампы низкого давления, называемые люминесцентными, содержат стеклянную трубку, внутренняя поверхность которой покрыта люминофором, наполненную дозированным количеством ртути (30–80 мг) и смесью инертных газов под давлением около 400 Па. На противоположных концах внутри трубки размещаются электроды, между которыми, при включении лампы в сеть, возникает газовый разряд, сопровождающийся излучением преимущественно в ультрафиолетовой области спектра. Это излучение, в свою очередь, преобразуется люминофором в видимое световое излучение [1,10].

В зависимости от состава люминофора люминесцентные лампы обладают различной цветностью. В настоящее время промышленность выпускает несколько типов люминесцентных ламп, отличающихся по цветности: лампы дневного света (ЛД), лампы дневного света с улучшенной цветопередачей (ЛДЦ), лампы наиболее близкие к естественному свету (ЛЕ), лампы белого цвета (ЛБ), лампы теплого белого цвета (ЛТБ), лампы холодного белого цвета (ЛХБ), лампы дневного света с исправленной цветопередачей (ЛДЦ), лампы рефлекторные с внутренним отражающим слоем (ЛР) и др.

К газоразрядным лампам высокого давления (0,03–0,08 МПа) относят дуговые ртутные лампы (ДРЛ). Лампы ДРЛ позволяют создавать большие уровни освещенности и рекомендуются к применению при высоте помещения более 12...14 м, при наличии в воздухе дыма, пыли и копоти. Однако по спектральному составу излучения они сильно отличаются от люминесцентных. В спектре излучения этих ламп преобладают составляющие зелено-голубой области спектра. Их нельзя применять там, где недопустимо искажение цветовосприятия.

Наиболее экономичными являются ДРИ – ртутные лампы высокого давления с добавкой иодидов металла, их часто называют металлогалогенными. Светоотдача этих ламп достигает 80 лм/Вт.

Недостатки газоразрядных ламп [10]:

содержание ртути (в замкнутом помещении разбитая ЛЛ может давать кратковременное превышение ПДК ртути более чем в 160 раз, загрязнение выше ПДК может сохраняться несколько десятков лет);

относительная сложность схемы включения, шум дросселей;

ограниченная единичная мощность и большие размеры при данной мощности;

невозможность переключения ламп, работающих на переменном токе, на питание от сети постоянного тока;

зависимость характеристик от температуры внешней среды (световой поток снижается при повышенных температурах);

значительное снижение потока к концу срока службы;

вредные для зрения пульсации светового потока с частотой 100 Гц при переменном токе 50 Гц;

срок действия компактных ЛЛ не всегда соответствует заявленному и может быть сравним со сроком ламп накаливания при существенно большей стоимости;

пульсации светового потока, возникающие вследствие малой инерционности свечения люминофора.

Создание в производственных помещениях качественного и эффективного освещения невозможно без рациональных светильников.

Электрический светильник – это совокупность источника света и осветительной арматуры, предназначенной для перераспределения излучаемого источником светового потока в требуемом направлении, предохранения глаз рабочего от слепящего действия ярких элементов источника света, защиты источника от механических повреждений, воздействия окружающей среды и эстетического оформления помещения.

Тип светильников определяется характером производственного помещения и технологического процесса, необходимой безопасностью, качеством освещения и удобством обслуживания [10,11,13]. Слепящее действие света устраняется при правильном выборе высоты подвеса определенного типа светильника.

Важной характеристикой светильника является его коэффициент полезного действия – отношение фактического светового потока светильника Фф к световому потоку помещенной в него лампы Фл, т. е. .

По распределению светового потока в пространстве различают светильники прямого, преимущественно прямого, рассеянного, отраженного и преимущественно отраженного света.