Угольные термометры сопротивления

 

Большинство угольных термометров обладает сопротивлением, которое возрастает с понижением температуры; для некоторых из них удовлетворительно выполняется соотношение . Тем не менее, весьма сомнительно, чтобы уголь был полупроводником в строгом смысле этого слова. Кристаллический графит обладает высокой анизотропией. Его сопротивление, измеренное на природной кристаллической чешуйке вдоль базисной плоскости, составляет примерно = 1·10-4 ом·см при комнатной температуре, а перпендикулярное базисной плоскости приблизительно равно 1 ом·см. В то время как, уменьшается с понижением температуры, возрастает. Такое поведение, по-видимому, согласуется с моделью, созданной на основании последних расчетов зонной структуры графита. Эта модель предполагает, что в направлении, параллельном базисной плоскости, имеется очень малое перекрытие зон, в то время как в направлении, перпендикулярном этой плоскости, существует узкая „щель“ между зонами.

Следовательно, монокристалл графита должен вести себя как проводник, обладающий металлической проводимостью, в одном направлении и как полупроводник в другом направлении. Нельзя ожидать хорошего согласия между этой моделью и свойствами угольных сопротивлений, поскольку они представляют собой поликристаллические агрегаты микроскопических частиц графита и их сопротивление определяется не только поликристалличностью, но также примесями и, что особенно существенно, природой контакта между частицами.

Используются пленки коллоидного графита для измерения температуры. Было проведено много работ, в которых для термометрии при очень низких температурах применялись сухая сажа или коллоидные суспензии графита (аквадаг, тушь и т. д.).

Интересным примером такого применения является термометр, использованный Мендельсоном и Рентоном при измерении теплопроводности сверхпроводников в области ниже 1 К. На образец, представлявший собой металлический стержень, наматывалось три витка эмалированной медной проволоки диаметром 0,3 мм с небольшими зазорами между витками (рис. 20.11). Чтобы достигнуть плотного прилегания проволоки к образцу, концы ее скручивались друг с другом; после этого один из концов проволоки обрезался над скруткой, а оставшийся использовался в дальнейшем как подводящий провод. Затем с наружной стороны одного из витков удалялась эмаль и на проволоку и лежащий под ней образец наносилась коллоидная суспензия графита в спирте. После высыхания спирта угольная пленка действовала как термометрическое вещество термометра сопротивления, включенного между проволокой и образцом, которые при этом играли роль подводящих проводов.

Преимуществами этих термометров являются высокая чувствительность при достаточно низких температурах, малая теплоемкость и тесный тепловой контакт с образцом, температуру которого необходимо измерить. Однако, если их нагреть до комнатной температуры и затем снова охладить, они обнаруживают гистерезисные эффекты и поэтому требуют повторной градуировки при каждом новом низкотемпературном эксперименте.

 

Рис. 20.11. Использование угольной пленки для измерения температуры.

 

Дальнейшим этапом применения угольных термометров было использование в 1947 г. Фербанком и Лане изготовленных промышленным способом угольных сопротивлений. Они вырезали чувствительные элементы из радиосопротивлений фирмы IRC, которые представляли собой покрытый слоем углерода пластмассовый сердечник, и использовали их в качестве приемника второго звука, т. е. для обнаружения тепловых волн, распространяющихся в гелии II. При этом было найдено, что сопротивление таких термометров . Вскоре после этого Клемент и Квиннелл впервые сообщили об успешных результатах поисков коммерческого угольного термометра нормального цилиндрического типа, обладающего высокой чувствительностью и воспроизводимостью при низких температурах. Они нашли, что радиосопротивления производства фирмы Alien - Bradley Co. обладают сопротивлением, которое резко зависит от температуры особенно в области ниже 20 К (рис. 20.12) и может быть выражено с точностью до 0,5% полуэмпирической формулой

 

. (20.13)

 

Как видно из рис. 20.12, особенно пригодны для использования при температурах от 20 до почти 1 К такие сопротивления с номиналами 22 или 56 ом. (одноваттные). Позднее Клемент и др. сообщили об использовании сопротивлений указанной фирмы с номиналами 2,7 и 10 ом для измерения температур ниже 1 К; при этом они нашли сопротивления пригодными вплоть до примерно 0,3 К. Пирс, Маркхем и Диллингер также проверяли характеристику 10 - омных сопротивлений в интервале 2-0,3 К и нашли, что можно получить воспроизводимые результаты в одном гелиевом опыте, хотя после того как сопротивление было нагрето до комнатной температуры и снова охлаждено, постоянные в вышеприведенной формуле слегка изменились.

Рис. 20.12. Графическая проверка выполнимости уравнения (20.13) для четырех угольных сопротивлений.

 

Можно отметить два важных преимущества угольных сопротивлений в качестве термометров: их сравнительно малую чувствительность к магнитному полю и почти полное отсутствие влияния измерительного тока, конечно, если исключить возможность саморазогревания термометра от выделяющейся в нем мощности. Кроме использования при температурах ниже 1 К коммерческие угольные сопротивления имеют важное применение в калориметрических измерениях ниже 20 К, где они служат в качестве очень чувствительных термометров, способных измерять очень малые изменения температуры. Для этой цели термометры обычно градуируются путем определения постоянных в уравнениях по температурным шкалам, связанным с упругостью пара жидкого гелия и жидкого водорода. Когда по условиям работы последующую интерполяцию в промежуточной области посредством указанных формул нельзя признать достаточно точной, в интервале от 4,2 до 14 К может быть определено путем сравнения с газовым термометром.

 



rr;