Сети с полносвязной топологией.

В сети с полносвязной топологией каждый компьютер сети напрямую связан с каждым компьютером этой сети (рис. 2).
Примером такой сети является сеть ячеистой (сотовой) топологии.

Рисунок 2. Сеть сотовой топологии.

Преимущества сотовых сетей:

· Высокая надежность, обусловленная избыточностью физических связей.

· простота диагностики.

Недостатки сотовых сетей:

· Необходимость наличия у каждого компьютера сети большого числа коммуникационных портов для соединения со всеми другими компьютерами.

· Необходимость выделения отдельной электрической линии связи для каждой пары компьютеров.

· Вышеперечисленное обуславливает высокую стоимость сотовой сети.

· Сложность инсталляции и реконфигурации добавления или удаления новых узлов).

Большинство сетевых топологий имеет неполносвязную структуру. К основным видам неполносвязных топологий можно отнести: шину, звезду, кольцо и смешанную топологию.

Сети шинной топологии.


В сетях с шинной топологией каждый компьютер сети подключен к одному общему кабелю (рисунок 3).

Рисунок 3. Сеть с шинной топологией

В шинной топологии отсутствуют активные схемы передачи сигнала от одного компьютера к другому. Когда одна из машин посылает сигнал, он свободно путешествует по всей длине кабеля. Достигнув конца кабеля, сигнал отражается и идет в обратном направлении (зацикливание). Для предотвращения зацикливания сигнала в сетях с шинной топологией обязательно использование терминатора на обоих концах кабеля.
Сигнал, посланный одной машиной, получают все компьютеры, подключенные к шине. Принимает же его только машина, адрес которой совпал с адресом получателя, закодированном в сообщении.
В каждый момент времени только один из компьютеров может передавать сигнал, остальные должны ждать своей очереди. Соответственно, пропускная способность сетей с шинной топологией невелика и ограничивается не только характеристиками кабеля, но и логической структурой сети.

Достоинства шинной топологии:

  • Низкая стоимость.
  • Простота расширения (простота подключения новых узлов и объединения двух подсетей с помощью повторителя).

Недостатки шинной топологии:

  • Низкая производительность.
  • Низкая надежность (частые дефекты кабелей и разъемов).
  • Сложность диагностики при разрыве кабеля или отказе разъема.
  • Любой дефект кабеля или разъема приводит к неработоспособности всей сети.

Из всего вышесказанного можно заключить, что шинная топология может применяться при небольшом числе узлов в сети и невысокой степени взаимодействия между ними. Вместе с тем, такая сеть отличается низкой стоимостью.


2.1.3 Звездообразная топология.


В сетях звездообразной топологии каждый узел подключается

отдельным кабелем к общему устройству, называемому концентратором (хабом) (рисунок 4). Концентратор передает данные от одного компьютера другому или всем остальным компьютерам сети.

Рисунок 4. Сеть звездообразной топологии.

Топология звезда позволяет использовать для подключения компьютеров различные типы кабелей. Наличие концентратора чаще всего делает возможным использование нескольких типов кабелей одновременно.

Достоинства звездообразной топологии:

  • Более высокая пропускная способность по сравнению с шинной топологией.
  • Выход из строя одного узла или нескольких узлов не влияет на работоспособность остальной сети.
  • Легкость включения в сеть новых узлов.
  • Возможность использования вместо хаба коммутатора (для фильтрации трафика, а также для мониторинга сети).
  • Возможность использования в одной сети нескольких типов кабелей.
  • Легкость создания подсетей путем приобретения дополнительного концентратора, подсоединения к нему машин и соединения концентраторов между собой.

Недостатки звездообразной топологии:

· Ограниченная возможность увеличения числа узлов сети (ограничивается количеством портов концентратора).

· Зависимость работоспособности сети от состояния концентратора.

· Высокий расход кабеля (отдельный кабель для подключения каждого компьютера).

· Более высокая стоимость по сравнению с шинной топологией (затраты на хаб и кабель).

Таким образом, сети звездообразной топологии целесообразно прокладывать в зданиях (помещениях), в которых от каждого компьютера можно проложить кабель до концентратора. При планировании такой сети особое внимание следует уделить выбору концентратора.

Кольцевая топология.


В сетях с кольцевой топологией (рисунок 5) каждый компьютер

подключается к общему сетевому кабельному кольцу, по которому передаются данные (в одном направлении).

Рисунок 5. Сеть с кольцевой топологией.

Каждый компьютер, получив данные, сверяет адрес получателя с собственным и в случае совпадения копирует данные в свой внутренний буфер. Сами данные при этом продолжают движение по кольцу и возвращаются к отправителю. Если, получив данные, компьютер обнаружил, что его адрес не совпадает с адресом получателя, он ретранслирует данные следующему компьютеру в кольце.

В качестве среды передачи данных для построения сети кольцевой топологии чаще всего используют экранированную или неэкранированную «витую пару», а также оптоволоконный кабель.

Для решения проблемы коллизий (когда два или более компьютеров одновременно пытаются передать данные) в сетях с кольцевой топологией применяется метод маркерного доступа. Специальное короткое сообщение-маркер постоянно циркулирует по кольцу. Прежде чем передать данные, компьютер должен дождаться маркера, прикрепить данные и служебную информацию к нему и передать это сообщение в сеть.
В быстрых сетях по кольцу циркулируют несколько маркеров.

Существуют две наиболее известных технологии сетей, основанные на кольцевой топологии - технология Token Ring и технология FDDI.

Сетевая технология - это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения сети.

В технологии Token Ring реализован метод маркерного доступа, описанный выше.
В технологии FDDI применяется два кольца. При нормальном состоянии сети функционирует только одно из колец, второе позволяет сохранить работоспособность сети в случае отказа узла. Такая сеть обладает высоким быстродействием и чрезвычайной отказоустойчивостью.

Достоинства кольцевой топологии:

· При передачи данных не возникает потери сигнала (благодаря ретрансляции).

· Не возникает коллизий (благодаря маркерному доступу).

· Высокая отказоустойчивость (в технологии FDDI).

Недостатки кольцевой топологии:

· Отказ одного узла может привести к неработоспособности всей сети (в технологии Token Ring).

· Добавление/удаление узла вынуждает разрывать сеть.

Таким образом, кольцевая топология целесообразна для построения надежной или/и высокоскоростной сети, существенное наращивание которой не планируется или маловероятно.

Смешанная топология.

Появление смешанных топологий обусловлено, как правило, необходимостью наращивать и модернизировать сеть. Часто суммарные затраты на постепенную модернизацию оказываются существенно большими, а результаты меньшими, чем при тратах на глобальную замену морально устаревших сетей.

Сети смешанной топологии (рисунок 6) обладают достоинствами и недостатками, характерными для составляющих их топологий.

Рисунок 6. Сеть со смешанной топологией

Среда передачи данных

2.2.1 Физическая среда передачи данныхможет представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.

В зависимости от среды передачи данных линии связи разделяются на:

· проводные (воздушные);

· кабельные (медные и волоконно-оптические);

· радиоканалы наземной и спутниковой связи.

2.2.2 Проводные (воздушные) линии связипредставляют собой провода без каких-либо, изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы, но при отсутствии других возможностей эти линии используются и для передачи компьютерных данных. Скоростные качества и помехозащищенность этих линий оставляют желать много лучшего. Сегодня проводные линии связи быстро вытесняются кабельными.

 

2.2.3 Кабельные линиипредставляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также, возможно, климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присоединение к нему различного оборудования. В компьютерных сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов, коаксиальные кабели с медной жилой, а также волоконно-оптические кабели.

Скрученная пара проводов называется витой парой (twisted pair). Витая пара существует в экранированном варианте (Shielded Twistedpair, STP), когда пара медных проводов обертывается в изоляционный экран, и неэкранированном (Unshielded TwistedPair, UTP), когда изоляционная обертка отсутствует. Скручивание проводов снижает влияние внешних помех на полезные сигналы, передаваемые по кабелю. Коаксиальный кабель (coaxial) имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Существует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения — для локальных сетей, для глобальных сетей, для кабельного телевидения и т. п. Волоконно-оптический кабель (opticalfiber) состоит из тонких (5-60 микрон) волокон, по которым распространяются световые сигналы. Это наиболее качественный тип кабеля — он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и к тому же лучше других типов передающей среды обеспечивает защиту данных от внешних помех.

2.2.4 Радиоканалы наземной и спутниковой связиобразуются с помощью передатчика и приемника радиоволн. Существует большое количество различных типов радиоканалов, отличающихся как используемым частотным диапазоном, так и дальностью канала. Диапазоны коротких, средних и длинных волн, называемые также диапазонами амплитудной модуляции (Amplitude Modulation, AM) по типу используемого в них метода модуляции сигнала, обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн, для которых характерна частотная модуляция (Frequency Modulation, FM), а также диапазонах сверхвысоких частот (СВЧ или microwaves). В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли и для устойчивой связи требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты используют либо спутниковые каналы, либо радиорелейные каналы, где это условие выполняется.

В компьютерных сетях сегодня применяются практически все описанные типы физических сред передачи данных, но наиболее перспективными являются волоконно-оптические. На них сегодня строятся как магистрали крупных территориальных сетей, так и высокоскоростные линии связи локальных сетей. Популярной средой является также витая пара, которая характеризуется отличным соотношением качества к стоимости, а также простотой монтажа. С помощью витой пары обычно подключают конечных абонентов сетей на расстояниях до 100 метров от концентратора. Спутниковые каналы и радиосвязь используются чаще всего в тех случаях, когда кабельные связи применить нельзя - например, при прохождении канала через малонаселенную местность или же для связи с мобильным пользователем сети, таким как шофер грузовика, врач, совершающий обход, и т. п.

Кабельные системы.

Кабель (cable), используемый для построения компьютерных сетей, представляет собой сложную конструкцию, состоящую, в общем случае, из проводников, изолирующих и экранирующих слоев. В современных сетях используются три типа кабеля:

- коаксиальный кабель (coaxial cable);

- "витая пара" (twisted pair);

- оптоволоконный кабель (fiber optic).

Коаксиальный кабель.

Коаксиальный кабель был первым типом кабеля, использованным для соединения компьютеров в сеть. Кабель данного типа (рисунок 7) состоит из центрального медного проводника, покрытого пластиковым изолирующим материалом, который, в свою очередь, окружен медной сеткой и/или алюминиевой фольгой. Этот внешний проводник обеспечивает заземление и защиту центрального проводника от внешней электромагнитной интерференции. При прокладке сетей используются два типа кабеля — "Толстый коаксиальный кабель" (Thicknet) и "Тонкий коаксиальный кабель" (Thinnet). Сети на основе коаксиального кабеля обеспечивают передачу со скоростью до 10 Мбит/с. Максимальная длина сегмента лежит в диапазоне от 185 до 500 м в зависимости от типа кабеля.

Рисунок 7. Устройство коаксиального кабеля

Витая Пара.

Кабель типа "витая пара" (twisted pair), является одним из наиболее распространенных типов кабеля в настоящее время (рисунок 8). Он состоит из нескольких пар медных проводов, покрытых пластиковой оболочкой. Провода, составляющие каждую пару, закручены вокруг друг друга, что обеспечивает защиту от взаимных наводок. Кабели данного типа делятся на два класса — "экранированная витая пара" ("Shielded twisted pair") и "неэкранированная витая пара" ("Unshielded twisted pair"). Отличие этих классов состоит в том, что экранированная витая пара является более защищенной от внешней электромагнитной интерференции, благодаря наличию дополнительного экрана из медной сетки и/или алюминиевой фольги, окружающего провода кабеля. Сети на основе "витой пары" в зависимости от категории кабеля обеспечивают передачу со скоростью от 10 Мбит/с – 10 Гбит/с. Длина сегмента кабеля не может превышать 100 м (до 100 Мбит/с) или 30 м (1 Гбит/с).

Рисунок 8. Устройство кабеля типа "витая пара"

 

Оптоволоконный кабель.

Оптоволоконные кабели представляют собой наиболее современную кабельную технологию, обеспечивающую высокую скорость передачи данных на большие расстояния, устойчивую к интерференции и прослушиванию. Оптоволоконный кабель состоит из центрального стеклянного или пластикового проводника, окруженного слоем стеклянного или пластикового покрытия и внешней защитной оболочкой (рисунок 9). Передача данных осуществляется с помощью лазерного или светодиодного передатчика, посылающего однонаправленные световые импульсы через центральный проводник. Сигнал на другом конце принимается фотодиодным приемником, осуществляющим преобразование световых импульсов в электрические сигналы, которые могут обрабатываться компьютером. Скорость передачи для оптоволоконных сетей находится в диапазоне от 100 Мбит/c до 2 Гбит/с. Ограничение по длине сегмента составляет 2 км.

Рисунок 9. Устройство оптоволоконного кабеля.

 

Сетевые технологии.

Технология Ethernet.

Общее количество сетей, работающих по протоколу Ethernet в настоящее время, оценивается в 5 миллионов, а количество компьютеров с установленными сетевыми адаптерами Ethernet – в 50 миллионов.

Когда говорят Ethernet, то под этим обычно понимают любой из вариантов этой технологии. В более узком смысле Ethernet - это сетевой стандарт, основанный на экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1970г. В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт версии II построенной на основе коаксиального кабеля, который стал последней версией фирменного стандарта Ethernet DIX или Ethernet II.

На основе стандарта Ethernet DIX был разработан стандарт IEEE 802.3, в нем различаются уровни MAC(Media Access Control – уровень управления доступом к среде) и LLC (Logical Link Control – уровень логической передачи данных), в оригинальном Ethernet оба эти уровня объединены в единый канальный уровень. Несколько отличается и формат кадра, хотя минимальные и максимальные размеры кадров в этих стандартах совпадают.

Для передачи информации по кабелю для всех вариантов физического уровня технологии Ethernet используется пропускная способность 10 Мбит/с.

Метод доступа CSMA/CD.

В сетях Ethernet используется метод доступа к среде передачи данных, называемый методом коллективного доступа с опознаванием несущей и обнаружением коллизий.

Этот метод применяется исключительно в сетях с логической общей шиной. Все компьютеры такой сети имеют непосредственный доступ к общей шине, поэтому она может быть использована для передачи данных между любыми двумя узлами сети. Одновременно все компьютеры сети имеют возможность немедленно (с учетом задержки распространения сигнала по физической среде) получить данные, которые любой из компьютеров начал передавать на общую шину. Простота схемы подключения – это один из факторов, определивших успех стандарта Ethernet. Говорят, что кабель, к которому подключены все станции, работает в режиме коллективного доступа.

Этапы доступа к среде.

Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения.

Чтобы получить возможность передавать кадр, станция должна убедиться, что разделяемая среда свободна. Если среда свободна, то узел имеет право начать передачу кадра.

Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные, передает их вверх по своему стеку, а затем посылает по кабелю кадр-ответ. Адрес станции источника содержится в исходном кадре, поэтому станция-получатель знает, кому нужно послать ответ.

После окончания передачи кадра все узлы сети обязаны выдержать технологическую паузу (Inter Packet Gap) в 9,6 мкс. Эта пауза, называемая также межкадровым интервалом, нужна для приведения сетевых адаптеров в исходное состояние, а также для предотвращения монопольного захвата среды одной станцией. После окончания технологической паузы узлы имеют право начать передачу своего кадра, так как среда свободна.

Возникновение коллизии.

При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Механизм прослушивания среды и пауза между кадрами не гарантируют от возникновения такой ситуации, когда две или более станции одновременно решают, что среда свободна, и начинают передавать свои кадры. Говорят, что при этом происходит коллизия (collision), так как содержимое обоих кадров сталкиваются на общем кабеле, и происходит искажение информации – методы кодирования, используемые в Ethernet, не позволяют выделять сигналы каждой станции из общего сигнала.

Для возникновения коллизии не обязательно, чтобы несколько станций начали передачу абсолютно одновременно, такая ситуация маловероятна. Гораздо вероятней, что коллизия возникает из-за того, что один узел начинает передачу раньше другого, но до второго узла сигналы первого просто не успевают дойти к тому времени, когда второй узел решает начать передачу своего кадра.