Основные сводные индексы и их взаимосвязи

В отличие от индивидуальных, сводные индексы позволяют обобщить показатели по нескольким видам товаров, нескольким видам продукции, по ценным бумагам нескольких эмитентов и т.д. Исходной является агрегатная форма сводного индекса. Сводные индексы также могут исчисляться в средней арифметической и средней гармонической формах. Особое значение имеют сводные индексы в биржевой статистике, где им отводится роль индикаторов состояния и динамики рынка ценных бумаг (фондовые индексы).

При построении сводных индексов наиболее распространены два способа. Первый заключается в том, что для текущего и базисного периода определяется величина явления по всей совокупности, а затем — соотношение отчетной величины к базисной. В результате можно получить величину изменения по всей совокупности анализируемых показателей — стоимости произведенной продукции, товарооборота, затрат, стоимости поставок и пр. Кроме этого можно определить, за счет какого элемента и в какой степе-пи произошли эти изменения. Такие индексы называются агрегатными.

Суть другого способа построения сводного индекса заключается в том, что, зная индивидуальные индексы, характеризующие изменения отдельных элементов сложного явления, определяется средняя величина изменения всех его элементов. Такие индексы называются средними. Средний индекс представляет собой лишь другой прием решения той же задачи. По своей величине он должен дать тот же результат, что и агрегатный.

Рассмотрим построение агрегатных индексов на примере табл. 9.2, где представлены данные за два периода. Агрегатный индекс представляет собой соотношение двух величин, каждая из которых — сумма произведений двух элементов, составляющих индекс. Например, товарооборот по п товарам в текущем периоде составит:

Аналогично для базисного периода товарооборот равен:

Если сравнить товарооборот в текущем периоде с его величиной в базисном периоде, получим сводный индекс товарооборота:

Рассчитаем индекс товарооборота по трем продуктам за два месяца (табл. 9.2):

Значение индекса позволяет сделать вывод о том, что товарооборот по данной товарной группе в апреле по сравнению с мартом возрос на 50,3% (150,3 - 100,0). В абсолютных величинах общее изменение товарооборота составило 83 тыс. руб. (248- 165).

Следует отметить, что единицы измерения товаров при расчете этого и последующих индексов значения не имеют. Так, часть товаров может измеряться в килограммах, другая часть — в штуках, третья — в метрах.

Согласно теории индексного метода, существуют два вида индексного анализа: синтетический и аналитический. Синтетический анализ позволяет оценить среднее изменение уровня индексируемого показателя, а аналитический дает возможность оценить влияние индексируемой величины на общее изменение индекса.

Величина индекса товарооборота формируется под воздействием двух факторов: на нее оказывает влияние как изменение цен на товары, так и изменение объемов их реализации. Подобные индексы "результативных" показателей (стоимости, общих затрат на производство и т.п.) дают характеристику изменения показателя в среднем, а их интерпретация носит "синтетический" характер.

Для того чтобы оценить влияние изменения на общую величину индекса только одного из двух элементов, необходимо второй элемент оставить неизменным, т.е. зафиксировать его на одном уровне. В этом случае агрегатный индекс представляет собой соотношение произведения двух элементов, один из которых изменяется (индексируемая величина), а другой фиксируется (вес индекса). Индексируемой величиной становится та, влияние которой на изменение общего индекса изучается, например в индексе цен — это цепа; в индексе физического объема — это объем продукции. Одним из вопросов, возникающих при построении агрегатного индекса, является вопрос о периоде фиксации веса индекса.

При построении индексов качественных показателей (таких как цена, себестоимость) в качестве весов используются количественные показатели (например, объем продукции), фиксируемые на уровне отчетного периода.

Таким способом получают сводный индекс цен (по метилу Пааше):

Для рассматриваемого примера (см. табл. 9.2) получим:

Таким образом, по данной товарной группе цены в апреле по сравнению с мартом в среднем возросли на 5,5%.

Рассмотрим сводный индекс цен более подробно. Числитель данного индекса содержит фактический товарооборот текущего периода. Знаменатель же представляет собой условную величину, показывающую, каким был бы товарооборот в текущем периоде при условии сохранения цен на базисном уровне. Поэтому соотношение этих двух категорий и отражает влияние изменения на товарооборот только одного элемента — цены.

Числитель и знаменатель сводного индекса цен можно интерпретировать иначе. Числитель представляет собой сумму денег, фактически уплаченных покупателями за товары в текущем периоде. Знаменатель же показывает, какую сумму покупатели заплатили бы за те же товары, если бы цены не изменились. Разность числителя и знаменателя будет отражать величину экономии (если знак "-") или перерасхода (знак "+") покупателей от изменения цен, тыс. руб.:

Полученный результат можно трактовать и как величину, на которую изменился товарооборот вследствие повышения цеп.

При построении данного индекса цена выступает в качестве индексируемой величины, а количество проданного товара — веса. Необходимо отметить, что в статистической практике также используется сводный индекс цен, построенный по методу Ласпейреса, когда веса фиксируются на уровне базисного, а не текущего периода:

По данным табл. 9.2 этот индекс составит:

В зависимости от целей исследования и имеющейся в наличии информации используется тот или иной индекс. Индекс цен Пааше по своей величине обычно меньше индекса Ласпейреса.

При построении индексов количественных показателей (например, объема продукции) в качестве весов используются качественные показатели, такие как цена, себестоимость, фиксируемые на уровне базисного периода. Таким индексом в рассматриваемой индексной системе является сводный индекс физического объема реализации (или производства) продукции. Он характеризует изменение количества проданных товаров не в денежных, а в физических единицах измерения. Весами в данном случае выступают цены, которые фиксируются на базисном уровне:

По данным табл. 9.2 индекс объема составит:

Физический объем реализации в среднем увеличился на 42,4% (142,4 - 100,0). В абсолютной величине — это разность числителя и знаменателя, равная 70 тыс. руб., т.е. на такую сумму увеличился товарооборот за счет увеличения объема продаж.

Между рассчитанными индексами существует мультипликативная взаимосвязь:

Проверим эту взаимосвязь по данным табл. 9.2:

1,055-1,424 = 1,503.

В абсолютных величинах взаимосвязь индексов выглядит следующим образом:

Такая взаимосвязь называется аддитивной. По данным табл. 9.2 взаимосвязь выглядит так: 83 = 13 + 70 (тыс. руб.) Таким образом, общее изменение стоимости товарооборота складывается из изменения товарооборота за счет объема продаж и увеличения цен.

Мы рассмотрели применение индексного метода в анализе товарооборота. Однако эта же индексная система может использоваться для анализа результатов производственной деятельности отрасли или отдельных предприятий, выпускающих разнородную продукцию. Тогда приведенные выше индексы соответственно называются:

• 1р1/ — индекс стоимости продукции;

• 1р — индекс оптовых цен;

• 1д — индекс физического объема продукции. Взаимосвязь между этими индексами остается прежней:

Еще одна область применения индексов — анализ затрат на производство и себестоимости.

Индивидуальный индекс себестоимости характеризует изменение себестоимости отдельного вида продукции в текущем периоде по сравнению с базисным. Для определения общего изменения уровня себестоимости нескольких видов продукции, выпускаемых предприятием, рассчитывается сводный индекс себестоимости. При этом себестоимость "взвешивается" по объему производства отдельных видов продукции:

Методология построения этого индекса аналогична методологии построения индекса цен. Числитель индекса отражает затраты на производство текущего периода, а знаменатель — условную величину затрат при сохранении себестоимости на базисном уровне. Разность числителя и знаменателя показывает сумму экономии (перерасхода) предприятия от изменения себестоимости:

Сводный индекс физического объема продукции, "взвешенный" по себестоимости, имеет следующий вид:

Взаимодействие факторов изменения себестоимости и объемов реализации отражается на значении сводного индекса затрат на производство:

Все три индекса также взаимосвязаны между собой:

На практике, как правило, расчет индексов проводится более чем за дна периода. Индексы позволяют получать сводную оценку изучаемых процессов постоянно, месяц за месяцем, год за годом. Для достижения сопоставимости они рассчитываются по единой методологии. Такая методология или схема расчета индексов за несколько последовательных временных периодов называется системой индексов.

В зависимости от информационной базы и целей исследования индексная система может строиться по-разному. Рассмотрим некоторые варианты ее построения на примере сводного индекса цен, рассчитываемого за п периодов.

Если сравнивать цены каждого периода с ценами периода предшествующего, то получаемая индексная система будет включать в себя цепные индексы, отражающие изменение цен за каждый из периодов рассматриваемого временного интервала. При этом в качестве весов можно использовать объемы реализации каждого конкретного периода или же постоянные объемы какого-либо периода, принятого в качестве базисного. Тогда индексная система будет включать в себя индексы цепные или базисные, с переменными или с постоянными весами.

Цепные индексы цен с переменными весами имеют следующий вид:

Цепные индексы цен с постоянными весами рассчитывают по следующим формулам:

Отметим, что использование постоянных весов более предпочтительно, так как рассчитываемые таким образом индексы мультипликативны, т.е. их можно последовательно перемножать и получать величину показателя за более продолжительный период. Так, располагая индексами цен за три последовательных месяца, можно получить сводную оценку изменения цены в целом за квартал. Индексы с переменными весами такой возможности не имеют.

Если сравнивать цены каждого периода с ценами какого-либо базисного периода (как правило, начального), то получаемая индексная система будет включать в себя базисные индексы, отражающие изменение цен накопленным итогом, т.е. с начала рассматриваемого временного интервала. Например, изменение цен в январе но сравнению с декабрем предшествующего года, в феврале — по сравнению с тем же декабрем и т.д. При этом в качестве весов также можно использовать объемы реализации каждого конкретного периода или же постоянные объемы периода, принятого в качестве базисного.

Система базисных индексов с переменными весами имеет следующий вид:

Базисные индексы цен с постоянными весами рассчитывают по формулам

Отметим, что использование постоянных весов приводит базисные индексы, так же как и цепные, к сопоставимому виду.

Пример. Рассмотрим построение системы индексов цен (табл. 9.3).

Таблица 9.3. Продажа продуктов Л, В, С за три месяца

Продукт

Январь

Февраль

Март

Ценар0

Количество <?0

Цена рх

Количество цх

Цена р2

Количество #2

Л

10

100

11

120

15

130

В

20

10

30

8

35

С

8

30

10

30

12

35

Для построения системы индексов предварительно определим необходимые суммы (табл. 9.4).

Таблица 9.4. Промежуточные расчеты для построения системы индексов

в

180

300

280

270

350

315

200

160

с

210

300

120

240

280

300

300

Итого

1420

1920

2650

1710

2130

1895

1600

2020

Цепные индексы цен с переменными весами:

Цепные индексы цен с постоянными весами:

Базисные индексы с переменными весами:

Базисные индексы цен с постоянными весами:

Взаимосвязь цепных и базисных индексов:

Решение о применении той или иной системы индексов зависит от задачи статистического исследования и имеющейся информации.