Метод экспоненциального сглаживания
Экспоненциальное сглаживание - способ сглаживания временных рядов, вычислительная процедура которого включает обработку всех предыдущих наблюдений, при этом учитывается устаревание информации по мере удаления от прогнозного периода. Иначе говоря, чем "старше" наблюдение, тем меньше оно должно влиять на величину прогнозной оценки. Идея экспоненциального сглаживания состоит в том, что по мере "старения" соответствующим наблюдениям придаются убывающие веса.
Данный метод прогнозирования считается весьма эффективным и падежным. Основные достоинства метода состоят в возможности учета весов исходной информации, в простоте вычислительных операций, в гибкости описания различных динамик процессов. Метод экспоненциального сглаживания дает возможность получить оценку параметров тренда, характеризующих не средний уровень процесса, а тенденцию, сложившуюся к моменту последнего наблюдения. Наибольшее применение метод нашел для реализации среднесрочных прогнозов. Для метода экспоненциального сглаживания основным моментом является выбор параметра сглаживания (сглаживающей константы) и начальных условий.
Простое экспоненциальное сглаживание временных рядов, содержащих тренд, приводит к систематической ошибке, связанной с отставанием сглаженных значений от фактических уровней временного ряда. Для учета тренда в нестационарных рядах применяется специальное двухпараметрическое линейное экспоненциальное сглаживание. В отличие от простого экспоненциального сглаживания с одной сглаживающей константой (параметром) данная процедура сглаживает одновременно случайные возмущения и тренд с использованием двух различных констант (параметров). Двухпараметрический метод сглаживания (метод Хольта) включает два уравнения. Первое предназначено для сглаживания наблюденных значений, а второе -для сглаживания тренда:
где I - 2, 3, 4 - периоды сглаживания; 5, - сглаженная величина на период £; У, - фактическое значение уровня на период 1 5, 1 - сглаженное значение на период Ь-\Ьг-сглаженное значение тренда на период 1 - сглаженное значение на период I- 1; А и В - сглаживающие константы (числа между 0 и 1).
Сглаживающие константы А и В характеризуют фактор взвешивания наблюдений. Обычно Л, В < 0,3. Так как (1 - А) < 1, (1 - В) < 1, то они убывают по экспоненциальному закону по мере удаления наблюдения от текущего периода I. Отсюда данная процедура получила название экспоненциально сглаживания.
Уравнение добавляется в общую процедуру для сглаживания тренда. Каждая новая оценка тренда получается как взвешенная сумма разности между последними двумя сглаженными значениями (текущая оценка тренда) и предыдущей сглаженной оценки. Данное уравнение позволяет существенно сократить влияние случайных возмущений на тренд с течением времени.
Прогнозирование с использованием экспоненциального сглаживания подобно процедуре "наивного" прогнозирования, когда прогнозная оценка на завтра полагается равной сегодняшнему значению. В данном случае в качестве прогноза на один период вперед рассматривается сглаженная величина на текущий период плюс текущее сглаженное значение тренда:
Данную процедуру можно использовать для прогнозирования на любое число периодов, на пример на т периодов:
Процедура прогнозирования начинается с того, что сглаженная величина 51 полагается равной первому наблюдению У,, т.е. 5, = У,.
Возникает проблема определения начального значения тренда 6]. Существуют два способа оценки Ьх.
Способ 1. Положим Ьх = 0. Такой подход хорошо работает в случае длинного исходного временного ряда. Тогда сглаженный тренд за небольшое число периодов приблизится к фактическому значению тренда.
Способ 2. Можно получить более точную оценку 6,, используя первые пять (или более) наблюдений временного ряда. На их основе гю методу наименьших квадратов решается уравнение У( = а + Ь х г. Величина Ь берется в качестве начального значения тренда.