ЗАКОН И ФОРМУЛЫ ПРОЧНОСТИ ИСК ОПТИМАЛЬНОЙ СТРУКТУРЫ

Общий закон прочности ИСК оптимальной структуры устанавливает, что произведение прочности (в любых показателях) конгломерата оптимальной структуры на фазовое отношение его вяжущего вещества в некоторой степени есть величина постоянная: Лиск*(с/ф)я = const. Эта закономерность может быть выражена и в отношении некоторых других свойств, чувствительных к изменениям в структуре. И тогда закон устанавливает, что произведение числовых значений функциональных свойств искусственных строительных конгломератов оптимальной структуры на степенную функцию фазового отношения его вяжущего вещества является величиной постоянной. Как отмечалось ранее, под условным выражением "фазовое отношение" понимается величина отношения массы среды к массе твердой высокодисперсной фазы в свежеизготовленном материале. Под постоянной величиной в законе прочности (и других свойств) имеется в виду произведение /Г(с7фК что указывает, в частности, на динамичный характер закона, зависимый от качества вяжущего вещества и технологии, принятой на производстве.

В непосредственной связи с законом прочности находятся и формулы для определения прочности конгломерата оптимальной структуры. Они следуют из анализа соответствующих графических зависимостей, наиболее четко выраженных в пространственной системе координат (см. рис. 3.8). Из графика на плоскости х—у видно, что

R -к'<

НОС "

(3.3)

на плоскости у—z видно, что

r =-ML,

ИСК ,100 у*

(3.4)

а на плоскости х—z

с/ф_с“_ 100 ^ Ф (с+ф)т/я

(3.5)

В формулах: к — коэффициент пористости, определяемый как — пористость сухой смеси вяжущего вещества, %; рх

пористость вяжущего вещества оптимальной структуры, равная обычно 2—3 %; b — показатель степени, равный 0,85—1,15. Учитывая относительно большую величину ро и малую рх в экстремальной точке вяжущего вещества, значение к практически приближается к единице, и поэтому нередко в формулах прочности коэффициент опускается, а в расчетах не учитывается (в плотных ИСК); х — отношение фазовых отношений, т. е. х = Показано, что это отношение по величине адекватно отношению осредненных толщин (б, 5*) пленок среды соответственно в вяжущем веществе конгломерата и в вяжущем веществе оптимальной структуры (в свежеизготовленных материалах). Действительно,

где v и v# — объемы среды в вяжущем веществе соответственно конгломерата и при сУф; 5сум и 5фСум — суммарные поверхности твердой фазы ф в вяжущем веществе конгломерата и в вяжущем веществе оптимальной структуры при сУф; 5уд — удельная поверхность твердой фазы вяжущего вещества (понятно, что она остается одинаковой по всей кривой оптимальных структур ИСК); у—средняя плотность среды в вяжущем веществе (понятно, что она не меняется по всей кривой оптимальных структур).

Следовательно, величина х показывает, во сколько раз фазовое отношение реального вяжущего вещества в конгломерате больше фазового отношения в вяжущем веществе оптимальной структуры (в точке М). Или, что-то же, во сколько раз пленка среды (б) в конгломерате толще пленки среды (5*) в вяжущем веществе оптимальной структуры. При этом толщины пленок среды принимаются осредненными, так как их величины зависят от диаметра твердых частиц фазы, и поэтому не являются постоянными. Показатели степени пит отражают нелинейность зависимостей прочности соответственно от фазового отношения вяжущего вещества и от количественного содержания вяжущего вещества в конгломерате, причем величина п—постоянная, а величина т колеблется от 0 до некоторого максимального значения; они определяются экспериментальным методом.

Апостериорное определение прочности ИСК оптимальной структуры возможно и еще по одной общей формуле, в которой соединено влияние отношения фазовых отношений и количества вяжущего вещества с+фі, а, следовательно, и количества (по массе, в процентах) заполнителя, поскольку П+Щ = 100 - (с+ф), %:

Эта необходимая для практики формула получена из формул (3.3) и (3.4) путем переумножения входящих в них членов и последующего извлечения квадратного корня. В формуле (3.6) отражено влияние качества заполнителей, использованных в ИСК, посредством показателей степени п (чем меньше показатель степени л, тем выше качество и плотность заполнителя) и т — показателя, зависящего от количества этого же компонента в смеси (чем больше заполнителя, тем большее значение и показателя т). Формулы тесно связаны между собой Ф посредством равенства:

получаемого на плоскости х—z в пространственной системе координат (см. рис. 3.8).

Для пористых конгломератов (с пористостью выше 2—3%) используют газо- и пенообразующие добавки с целью поризации вяжущего вещества, а также пористые заполнители. В результате прочность ИСК снижается, но формулы для ее подсчета сохраняются прежними, так как сохраняются все требуемые признаки оптимальных структур. Важно только сохранить условие, чтобы реальное с/ф не было меньше расчетного с*/ф, ибо в этом случае структура перестает быть оптимальной, а пленки среды — континуальными (непрерывными).

По физической сущности закон и формулы прочности ИСК отражают максимальные значения сил сцепления микро- и макрочастиц при минимальных расстояниях между ними вследствие минимальных толщин континуальных пленок среды. Они отражают также минимальную дефектность и наибольшую однородность.

С учетом зависимостей Гриффитса общая формула прочности конгломерата оптимальной структуры может быть выражена:

где /к — суммарная величина дефектов, способствующих концентрации напряжений, появлению, росту и ускорению роста микро- и макротрещин до критических размеров, что быстро снижает прочность по мере удаления параметров структуры от оптимальных; кг — поправочный коэффициент перехода от хрупкого к вязкому разрушению; G — удельная свободная поверхностная энергия; Е — модуль упругости; (6/8*)" — отношение толщин пленок среды соответственно в вяжущем веществе ИСК и в вяжущем веществе оптимальной структуры, т. е. при с*/ф, а показатель степени п зависит от характера и плотности упаковки микрочастиц вяжущего вещества; (г/го) — отношение межатомных (межмолекулярных) расстояний в микроструктуре вяжущего вещества соответственно в момент разрушения и момент равенства сил притяжения и отталкивания, т. е. когда равнодействующая их равна нулю (рис. 3.6 и 3.9). Из формулы (3.7) следует, что в ее знаменатель входят разу- прочняющие, а в числитель — упрочняющие факторы. Управление этими факторами составляет основу повышения прочности ИСК.

Рис. 3.9. График изменения прочности (или внутреннего напряжения) при увеличении расстояния г между микрочастицами

По формулам прочности ИСК оптимальной структуры определяют статическую и усталостную прочность. Для увеличения Лиск необходимо повысить прочность вяжущего — матричного вещества, увеличить плотность упаковки макрочастиц, снизить до оптимальных пределов толщину пленок среды в свежеизготовленном конгломерате, уменьшить до минимума ОГЛАВЛЕНИЕ вяжущего вещества при непременном сохранении континуальной пространственной сетки среды. Необходимо также технологическими мерами добиваться минимума дефектов, наибольшей компактности микрочастиц. В некоторых пределах возможно поднять еще модуль упругости, т. е. жесткость материала. При направленном управлении прочностью ИСК следует стремиться к повышению членов формулы в числителе и к снижению — в знаменателе.

Некоторые ИСК проявляют повышенную чувствительность к колебаниям внешней температуры (Т) или к отклонениям в скорости (v) нагружения или скорости деформирования материала в конструкции. Тогда потребуется ввести в формулы прочности коррективы из опытных данных, а именно: если изменилась температура и она стала равной Тг вместо прежней Т, то, согласно рис. 3.10, а, при неизменной скорости vi прочность ИСК будет равна:

где р — показатель степени, отражающий нелинейность изменения прочности ИСК с повышением температуры. При более высокой скорости V2 приложения нагрузки или скорости деформирования, вместо прежней vi, но постоянной температуре, равной Тг, прочность ИСК, согласно рис. 3.10, б, определяется по формуле

б)

Рис. 3.10. Графики изменения прочности материала при повышении температуры (а) и изменения прочности материала при повышении скорости приложения нагрузки или скорости деформирования (б)

где к — показатель степени, отражающий нелинейность изменения прочности ИСК с повышением скорости V.

Подстановкой значений Яг,., и в формулу (3.9) и с учетом формулы (3.3) получаем в окончательном виде обобщенную формулу прочности ИСК:

Многие хрупкие и псевдо- хрупкие материалы слабо реагируют на отклонения в определенных пределах температуры и скорости деформирования. Они практически не изменяют прочности под влиянием обычных колебаний этих факторов. В отношении их показатели р и к оказываются как бы равными нулю, а соответствующие симплексы — температурный и реологический — принимают единичные значения. Для этих материалов обобщенная формула прочности принимает вид общей формулы (3.6). К таким ИСК относятся, в частности, цементный бетон, силикатные изделия, керамические и им подобные материалы, реактопласт и др. К типичным нехрупким ИСК могут быть отнесены асфальтовые бетоны, полимербетоны на основе термопластов и др. Так, например, степенной показатель теплостойкости у асфальтобетонов колеблется в пределах р = 10,0—12,5, а показатель деформационной стойкости к = 0,12—0,20 — в зависимости от типа макроструктуры (у порфировых — меньше, у контактных — больше).