Законы логики

Логические законы составляют основу человеческого мышления. Они определяют, когда из одних высказываний логически вытекают другие высказывания, и представляют собой тот невидимый железный каркас, на котором держится последовательное рассуждение и без которого оно превращается в хаотическую, бессвязную речь.

Без логического закона нельзя понять, что такое логическое следование, а значит, – что такое доказательство. Правильное, или, как обычно говорят, логичное, мышление, – это мышление по законам логики, по тем абстрактным схемам, которые фиксируются ими. Отсюда понятна вся важность данных законов.

Группы однородных логических законов образуют логические системы, которые также обычно называются "логиками": логическая теория силлогизма, модальная логика и т.п.

Логические законы объективны и не зависят от воли и сознания человека. Они не являются результатом соглашения между людьми, некоторой специально разработанной или стихийно сложившейся конвенции. Они не являются и порождением какого-то "мирового духа", как полагал когда-то Платон. Власть законов логики над человеком, их обязательная для правильного мышления сила обусловлена тем, что они представляют отображение в человеческом мышлении реального мира и многовекового опыта его познания и преобразования человеком.

Подобно всем иным научным законам, логические законы являются универсальными и необходимыми. Они действуют всегда и везде, распространяясь в равной мере на всех людей и на любые эпохи. Представители разных наций и разных культур, мужчины и женщины, древние египтяне и современные полинезийцы с точки зрения логики своих рассуждений не отличаются друг от друга.

Присущая логическим законам необходимость в каком-то смысле даже более настоятельна и непреложна, чем природная, или физическая, необходимость. Невозможно даже представить, чтобы логически необходимое было иным. Если что-то противоречит законам природы и является физически невозможным, то никакой инженер при всей его одаренности не сумеет реализовать это. Но если нечто противоречит законам логики и является логически невозможным, то не только инженер, а даже всемогущее существо, если бы оно вдруг появилось, не смогло бы воплотить это в жизнь.

Число схем правильного рассуждения (логических законов) бесконечно. Многие из этих схем известны нам из практики рассуждения. Мы применяем их интуитивно, не отдавая себе отчета, что в каждом правильно проведенном нами умозаключении используется тот или иной логический закон.

Логический закон принято называть также логической тавтологией. Логическая тавтология обычно определяется как выражение, остающееся истинным независимо от того, о каких объектах идет речь, или "всегда истинное" выражение.

Например, все результаты подстановок в логический закон двойного отрицания "Если А, то неверно, что не-А" являются истинными высказываниями: "Если сажа черная, то неверно, что она не является черной", "Если человек дрожит от страха, то неверно, что он не дрожит от страха" и т.д.

Современная логика исследует логические законы только как элементы систем, включающих бесконечные множества таких законов. Каждая из логических систем представляет собой абстрактную знаковую модель, дающую описание какого-то определенного фрагмента, или типа, наших рассуждений.

Закон противоречия

Из бесконечного множества логических законов самым популярным является, без сомнения, закон противоречия. Он был открыт одним из первых и сразу же был объявлен наиболее важным принципом не только человеческого мышления, но и самого бытия. И вместе с тем в истории логики не было периода, когда этот закон не оспаривался бы и когда дискуссии вокруг него совершенно затихали бы.

Закон противоречия говорит о противоречащих друг другу высказываниях, т.е. о таких высказываниях, одно из которых является отрицанием другого. К ним относятся, например, высказывания "Луна – спутник Земли" и "Луна не является спутником Земли", "Трава – зеленая" и "Неверно, что трава зеленая" и т.п. В одном из противоречащих высказываний что-то утверждается, в другом – это же самое отрицается.

Если обозначить буквой А произвольное высказывание, то выражение не-А будет отрицанием этого высказывания. Идея, выражаемая законом противоречия, кажется простой и даже банальной: высказывание и его отрицание не могут быть вместе истинными. Используя вместо высказывании буквы, эту идею можно передать так: неверно, что А и не-А. Неверно, например, что трава зеленая и не зеленая, что Луна – спутник Земли и не спутник Земли и т.д.

Большинство неверных толкований этого закона и большая часть попыток оспорить его приложимость, если не во всех, то хотя бы в отдельных областях, связаны с неправильным пониманием логического отрицания, а значит и противоречия. Высказывание и его отрицание должны говорить об одном и том же предмете, рассматриваемом в одном и том же отношении. Эти два высказывания должны совпадать во всем, кроме одной-единствснной вещи: то, что утверждается в одном, отрицается в другом. Если эта простая вещь забывается, противоречия нет, поскольку нет отрицания.

В романе Ф. Рабле "Гаргантюа и Пантагрюэль" Панург спрашивает философа Труйогана, стоит жениться или нет. Труйоган, как истинный философ, отвечает довольно загадочно: и стоит, и не стоит. Казалось бы, явно противоречивый, а потому невыполнимый и бесполезный совет. Но постепенно выясняется, что никакого противоречия здесь нет. Сама по себе женитьба – дело не плохое. Но плохо, когда, женившись, человек теряет интерес ко всему остальному.

Видимость противоречия связана здесь с лаконичностью ответа Труйогана.

Если ввести понятия истины и лжи, закон противоречия можно сформулировать так: никакое высказывание не является вместе истинным и ложным. В этой версии закон звучит особенно убедительно. Истина и ложь – это две несовместимые характеристики высказывания. Истинное высказывание соответствует действительности, ложное не соответствует ей. Тот, кто отрицает закон противоречия, должен признать, что одно и то же высказывание может соответствовать реальному положению вещей и одновременно не соответствовать ему. Трудно понять, что означают в таком случае сами понятия истины и лжи.

Те примеры, которые иногда противопоставляют закону противоречия, не являются подлинными противоречиями и не имеют к нему никакого отношения.

Нет противоречия в утверждении: "Осень настала и еще не настала", когда подразумевается, что хотя по календарю уже осень, на дворе тепло, как летом.

Отношение логики к противоречиям лишено двусмысленности и неопределенности: где есть противоречия, гам логика поколеблена.

Никто, пожалуй, не утверждает прямолинейно, что дождь идет и не идет или что трава зеленая и одновременно не зеленая. Л если и утверждает, то только в переносном смысле. Противоречие вкрадывается в рассуждение, как правило, в неявном виде. Чаще всего противоречие довольно легко обнаружить.

В начале века, когда автомобилей стало довольно много, в одном английском графстве было издано распоряжение: если два автомобиля подъезжают одновременно к пересечению дорог под прямым углом, то каждый из них должен ждать, пока не проедет другой. Это распоряжение внутренне противоречиво и потому невыполнимо.

У детей популярны головоломки такого типа: что произойдет, если всесокрушающее пушечное ядро, сметающее на своем пути все, попадет в несокрушимый столб, который нельзя ни повалить, ни сломать? Ясно, что ничего не произойдет: подобная ситуация логически противоречива, а значит, нереальна.

Противоречие может быть и более скрытым. Такое противоречие содержится, например, в маленьком рассказе писателя-юмориста Э. Липиньского: "Жан Марк Натюр, известный французский художник-портретист, долгое время не мог схватить сходство с португальским послом, которого как раз рисовал. Расстроенный неудачей, он уже собирался бросить работу, но перспектива высокого гонорара склонила его к дальнейшим попыткам добиться сходства. Когда портрет близился к завершению и сходство было уже почти достигнуто, португальский посол покинул Францию, и портрет остался с несхваченным сходством. Натюр продал его очень выгодно, но с этого времени решил сначала схватывать сходство и только потом приступать к написанию портрета".

Уловить сходство несуществующего портрета с оригиналом так же невозможно, как невозможно написать портрет, не написав его.

В комедии Козьмы Пруткова "Фантазия" некто Беспардонный намеревается продать "портрет одного знаменитого незнакомца: очень похож...". Здесь ситуация обратная: если оригинал неизвестен, о портрете нельзя сказать, что он похож. Кроме того, о совершенно неизвестном человеке нелепо утверждать, что он знаменит.

Противоречие недопустимо в строгом рассуждении, когда оно смешивает истину с ложью. Но, как очевидно из приведенных примеров, в обычной речи у противоречия много разных задач.

Оно может выступать в качестве основы сюжета какого-либо рассказа, быть средством достижения особой художественной выразительности и т.д.

Реальное мышление – и тем более художественное – не сводится к одной логичности. В нем важно все: и ясность и неясность, и доказательность и зыбкость, и точное определение и чувственный образ. В нем может оказаться нужным и противоречие, если оно к месту.

Известно, что Н. В. Гоголь очень не жаловал чиновников. В "Мертвых душах" они изображены с особым сарказмом. Они "были, более или менее, люди просвещенные: кто читал Карамзина, кто "Московские ведомости", кто даже и совсем ничего не читал". Хороша же просвещенность, за которой только чтение газеты, а то и вовсе ничего нет.

Испанский писатель Ф. Кеведо так озаглавил свою сатиру: "Книга обо всем и еще о многом другом". Его не смутило то, что, если книга охватывает "все", для "многого другого" уже не остается места.

Классической фигурой стилистики, едва ли не ровесницей самой поэзии, является оксюморон – сочетание логически враждующих понятий, вместе создающих новое представление. "Пышное природы увяданье", "свеча темно горит" (А. С. Пушкин), "живой труп" (Л. Н. Толстой), "ваш сын прекрасно болен" (В. В. Маяковский) – все это оксюмороны. А в строках стихотворения А. А. Ахматовой "смотри, ей весело грустить, такой нарядно обнаженной" сразу два оксюморона. Один поэт сказал о Державине: "Он врал правду Екатерине". Без противоречия так хорошо и точно, пожалуй, не скажешь.

Логические противоречия недопустимы в науке, но установить, что конкретная теория не содержит их, иногда бывает непросто. То, что в процессе развития и развертывания теории не встречено никаких противоречии, еще не означает, что их в самом деле нет. Научная теория – очень сложная система утверждений. Не всегда противоречие удается обнаружить относительно быстро путем последовательного выведения следствий из ее положений. Вопрос о непротиворечивости становится яснее, когда теория допускает аксиоматическую формулировку, подобно геометрии Евклида или механике Ныотона. Для большинства аксиоматизированных теорий непротиворечивость доказывается без особого труда.