Группы крови и резус-фактор
Кровь одного человека не всегда совместима с кровью другого. В мембране эритроцитов человека содержатся различные антигены – белки-маркеры, в которых закодирована специфичность данной клетки. При попадании в организм клеток с "чужим" маркером организм стремится повредить и удалить эту клетку – такая реакция является одной из основ иммунной защиты организма. Однако при необходимости переливания крови эта реакция может привести к тяжелым последствиям: введенная кровь другого человека "не принимается" организмом, развивается склеивание эритроцитов и последующее их разрушение. Антигенный "портрет" крови получил название группы крови, он отражает ОГЛАВЛЕНИЕ в эритроцитах специфических белков, отвечающих за совместимость или несовместимость крови различных людей.
У людей различают четыре группы крови, определяемые по системе АВО. Открытие системы принадлежит К. Ландштейнеру, который в 1901 г. обнаружил в эритроцитах людей агглютиногены ("маркеры") А и В, а в плазме крови – агглютинины а и b (антитела – гамма-глобулины).
В зависимости от наличия или отсутствия в крови конкретного человека агглютиногенов и агглютининов группы крови в системе АВО обозначаются цифрами и теми агглютиногенами, которые содержатся в эритроцитах данной группы:
• I группа (О) – в эритроцитах агглютиногенов нет, в плазме содержатся агглютинины а и ft;
• II группа (А) – в эритроцитах содержится агглютиноген А, в плазме – агглютинин b;
• III группа (В) – в эритроцитах находится агглютиноген В, в плазме – агглютинин а;
• IV группа (АВ) – в эритроцитах обнаруживаются агглютиногены А и В, в плазме агглютининов пет.
Агглютинация (склеивание эритроцитов с последующим их разрушением) происходит в том случае, если в крови человека встречаются агглютиноген с одноименным агглютинином: агглютиноген А с агглютинином а или агглютиноген В с агглютинином /;. При переливании несовместимой крови в результате агглютинации и последующего гемолиза (распада) эритроцитов развивается гемотрансфузионный шок, который может привести к смерти. Поэтому было разработано правило переливания небольших количеств крови (200 мл), по которому учитывается наличие агглютиногенов в эритроцитах донора и агглютининов в плазме реципиента (табл. 4.1).
Таблица 4.1
Совместимость крови людей
Группа крови |
Может отдавать кровь группам |
Может принимать кровь групп |
I (О) |
I, II, III, IV (О, А, В, АВ) |
I (О) |
II (А) |
II, IV (А, АВ) |
I, II(О, А) |
III (В) |
III, IV (В, АВ) |
I, III (О, В) |
IV (АВ) |
IV (АВ) |
I, II, III, IV (О, А, В, АВ) |
Примечание. При необходимости переливания больших количеств крови можно пользоваться только кровью одноименной группы.
В плазме крови новорожденных агглютининов (антител) нет. Они образуются в течение первого года жизни ребенка к тем антигенам, которых нет в его собственных эритроцитах.
Кроме группы крови, совместимость определяется системой Rh-фактора (резус-система). Резус-принадлежность крови определяется наличием или отсутствием на поверхности эритроцитов группы специфических белков-"маркеров", называемых резус-фактором (наличие фактора обозначается – Rh+, отсутствие – Rh-). Этот фактор обнаружен в 1940 г. К. Ландштейнером и А. Вейнером у обезьян Macacus rhesus, а затем и у человека. Около 85% европейцев, 93% африканцев, 99% индейцев и азиатов обладают резус-фактором и соответственно являются резус-положительными, остальные люди, не имеющие его – резус-отрицательными. При попадании в организм человека с резус-положительным фактором (Rh+) резус-отрицательной крови (Rh-) несовместимости не происходит. Но при обратной ситуации – попадании Rh+-KpoBH в организм человека с резус-отрицательным фактором – развивается тяжелая реакция иммунной несовместимости, нередко приводящая к летальному (смертельному) исходу. В резус-отрицательной крови нет антител на резус-фактор, но они быстро образуются при попадании резус-положительной крови в организм. Резус-фактор крови также играет важную роль в формировании гемолитической желтухи новорожденных, возникающей вследствие резус-конфликта матери и эритроцитов плода.
Белые кровяные клетки – лейкоциты – играют важную роль в защите организма от болезней. Существует несколько видов лейкоцитов, отличающихся по строению и функциям. Они бесцветны, поэтому их и называют белыми клетками крови (см. рис. 4.2). В 1 мм3 крови содержится 6–8 тыс. лейкоцитов. Продолжительность их жизни различна: от нескольких суток до нескольких десятков лет. Лейкоциты непрерывно образуются в кроветворных органах – красном костном мозге, селезенке и лимфатических узлах. Лейкоциты способны активно передвигаться.
Все лейкоциты имеют ядра, по строению ядра они делятся на два типа. Гранулоциты имеют разделенное на лопасти ядро, зернистую цитоплазму и способны к амебоидному движению. Их можно разделить на фагоциты, или нейтрофилы, поглощающие болезнетворные бактерии; эозинофилы и базофилы. Агранулоциты содержат ядро овальной формы и незернистую цитоплазму. Они подразделяются на моноциты, поглощающие бактерии, и лимфоциты, вырабатывающие антитела. Соотношение состава белых клеток крови (лейкоцитов) представлено на рис. 4.1.
Красные кровяные пластинки (тромбоциты) – это фрагменты клеток неправильной формы, обычно лишенные ядра. Они образуются в костном мозге; в 1 мл крови содержится около 250 тыс. тромбоцитов. Их основное назначение – инициация свертывания крови.
Гемостаз (свертывание крови, или гемокоагуляция) – сложный биологический процесс образования в крови тромбов, в результате чего кровь теряет текучесть. При разрушении стенки сосуда тромбоциты собираются у места травмы и выделяют тромбопластин, который наряду с кальцием, витамином К и протромбином способствует превращению фибриногена (растворимого белка крови) в фибрин (нерастворимые белковые "нити"). Образуются сети фибрина, где задерживаются форменные элементы крови. Сгусток крови, состоящий из нитей фибрина и клеток крови, – тромб – закупоривает поврежденное место. Этот процесс препятствует потере крови организмом при повреждении сосудистого русла и является важным механизмом поддержания гомеостаза – постоянства внутренней среды. Дисбаланс сложных механизмов системы гемостаза может проявляться в неспособности крови образовывать тромбы (например, при наследственной болезни гемофилии, характеризующейся повышенной кровоточивостью, приводящей к значительным потерям крови при небольших повреждениях) или, напротив, в тромбообразовании в сосудах с нарушением тока крови (при некоторых болезнях крови или специфических изменениях системы гемостаза в пожилом возрасте).
Стенки капилляров проницаемы для всех компонентов крови, за исключением эритроцитов. Часть крови уходит через них, образуя межклеточную жидкость. Именно через эту жидкость и происходит обмен веществ между кровыо и тканями. Значительная часть межклеточной жидкости возвращается в кровь через венозные концы капилляров или лимфатическую систему.