ЭНЕРГЕТИЧЕСКАЯ АКТИВНОСТЬ МИНЕРАЛОВ И ГОРНЫХ ПОРОД

Качество минерального материала определяется степенью дисперсности и кристаллохимическими особенностями (топохимисй) поверхности его частиц. Дроблением грубозернистых минеральных материалов обеспечивается получение частиц разных размеров и формы, что позволяет разделять их на фракции. При измельчении мелкозернистых материалов увеличивается удельная поверхность и повышается ее физико-химическая и химическая активность. Последовательное уменьшение размеров частиц в процессе измельчения минералов и горных пород сопровождается быстрым увеличением их суммарной и удельной поверхности (см. рис. 2.2). С увеличением удельной поверхности материалов повышаются ее потенциальные энергии и способность переходить в другую фазу, например, путем растворения частиц. При механическом измельчении нарушаются некоторые химические связи с образованием на поверхности частиц групп свободных радикалов и свободных ионов с нескомпенсиро- ванными зарядами, например, катионов Са2* и комплексных анионов (СОз)2- при нарушении связей между ними в кристаллической решетке кальцита, или же появлением ненасыщенных катионов Са2* и анионных тетраэдрических групп SO42 при дроблении гипса. Образующиеся при этом частицы — обломки кристаллических решеток — становятся сложными пространственными системами, взаимодействующими с внешней средой как сложные электрические поля, знак и величина которых зависят от химического состава вещества, характера строения и размера частиц. Свежеобразованная поверхность минеральных частиц обладает повышенной реакционной способностью, причем она может заряжаться преимущественно положительно, как, например, у кальцита, или отрицательно, как у кварца, или оказаться нейтральной, как у графита.

Путем сухого измельчения минеральных материалов можно получить порошки с различными кристаллохимическими особенностями: а) с высоким потенциалом положительного знака и большим количеством адсорбционных центров в виде катионов Са2* и Mg2* на поверхности частиц — из кальцита, доломита, известняка; б) с высоким потенциалом отрицательного знака и значительным количеством адсорбционных центров в виде ионов О2- — из кварца, кремния, каолинита, гранита, трахита, вулканического туфа; в) с пониженным потенциалом отрицательного знака в связи с наличием

на поверхности их частиц катионов различной валентности К+, Na+, Си2*, Mg2 Fe2 Fe3+ и др. — при измельчении полевого шпата, слюд, роговой обманки, авгита, асбеста, гидрослюд, гипса, габбро, диабаза и др.; г) с преимущественно нейтральной поверхностью частиц — полученные из талька и графита. Частичное нарушение химических связей, вызываемое измельчением материалов, способствует появлению на поверхности частиц химических центров с повышенной активностью, эффективность проявления которой при взаимодействии с реагентами окружающей среды (вода, щелочные и кислотные растворы и др.) определяется характером и составом последней. Обычно создаются благоприятные условия для протекания физико-химических процессов на границе раздела фаз в виде смачивания, адсорбции, растворения и т. п.

Одной из предпосылок обоснованного выбора исходного материала является прогнозирование энергетических свойств его поверхности в высокодисперсном порошкообразном состоянии, в том числе с изменением знака потенциала на границе раздела фаз. Примером сохранения или изменения кристаллохимических особенностей высокодисперсных минеральных материалов может служить использование сухого свежеизготовленного порошка хризотил-асбеста в двухкомпонентных битумоминеральных смесях или же в сложных системах — при производстве асбестоцементных изделий мокрым способом. В первом случае при приготовлении асфальтовяжущего вещества на основе битума сухой хризотил-асбестовый порошок при соединении с последним сохраняет свой несколько пониженный отрицательный потенциал поверхности частиц, не обеспечивающий достаточно прочного взаимодействия их с ПАВ (свободными асфальтогеновыми кислотами, асфальтенами) битума на границе раздела фаз, которое несколько компенсируется механическим армированием битумоминеральной смеси тончайшими (до 0,1 р и меньше) эластическими волокнами асбеста.

Последующее контактирование битумно-асбестового вещества с водой, т. е. появление в этой системе новой (водной) фазы, сопровождается резким снижением его структурно-механических свойств. Значительная часть пленочного битума, слабо связанного с поверхностью асбестовых частиц, при этом снова переводится в свободное состояние полярными молекулами воды, которые одновременно гидратируют освободившуюся поверхность асбестовых частиц. Поверхностно-активные вещества битума, потерявшие адсорбционную связь с частицами асбеста, становятся активными гидрофильными центрами в системе, особенно сильно гидратируя и ухудшая ее свойства с повышением дисперсности и количества асбестового порошка. При этом возможно изменение отрицательного знака потенциала поверхности частиц хризотил-асбеста на положительный в результате ее перезарядки. Последняя может быть вызвана преимущественным отщеплением ионов (ОН)- с их поверхности молекулами воды и возникающим на ней вследствие этого избытком положительных ионов Mg2+.

При производстве асбестоцементных изделий мокрым способом хризотил-асбест является составной частью сложной системы асбест — цемент — водный раствор гипса, извести и щелочей. Свойства его поверхности начинают быстро изменяться на границе с водной, щелочной или другими средами, приобретая положительный потенциал, около 100 mv, за счет перезарядки поверхностного слоя частичек (волоконец) асбеста, которые состоят из гидроксильных групп (ОН)-, соединенных со смежным внутренним слоем из ионов Mg2+. Значительная поверхностная активность этих щелочных групп при их частичном растворении или притяжении ионов противоположного знака обеспечивает появление явно выраженного положительного заряда хризотил-асбеста. С этими явлениями связаны эффективность технологического процесса получения асбестоцементной продукции и ее качество, которые определяются характером реакций, протекающих на поверхности раздела компонентов в системе, и зависят от фильтрующей способности асбестоцементной суспензии, т. е. от поверхностных свойств твердых асбестовых частиц и раствора, в котором они диспергированы. Размеры седиментационного объема при фильтрации асбестоцементной суспензии связаны обратной зависимостью с величиной поверхностных зарядов частиц. При хризотил-асбестовом компоненте с его сравнительно большим зарядом имеет место значительное отталкивание частиц, препятствующее их слипанию, и возникают малые седиментационные объемы с плотной упаковкой твердых частиц, пониженной водопроницаемостью и повышенной тенденцией к самоуплотнению, которые мешают регулировать плотность продукции.

При использовании хризотил-асбеста из верхних горизонтов месторождений его внешний бруситовый слой Mg(OH)2 может оказаться нарушенным вследствие выветривания. Во взаимодействие с жидкой средой вступает тогда более глубокий слой кремнекислородных тетраэдров, что вызывает образование тончайшего слоя кремнекислоты HjSiCb, диссоциирующей с отщеплением преимущественно ионов Н Оставшиеся при этом на поверхности частиц ионы Si032_ сообщают им отрицательный заряд, а подвергшийся выветриванию хризотил-асбест по знаку потенциала напоминает ам фиболовый асбест. Эта последняя разновидность асбеста характеризуется небольшим отрицательным зарядом и способностью образовывать беспорядочно ориентированные сетчатые асбестоцементные структуры с хорошими фильтрационными свойствами (очень важными при производстве асбестоцемента).

При измельчении минеральных материалов рациональный предел степени дисперсности устанавливают опытным путем. Сего превышением энергетическая активность поверхности настолько возрастает, что происходит самопроизвольное агрегирование частиц с появлением комковатости, уменьшением удельной поверхности и однородности. Возрастает опасность потери поверхностной активности порошкообразного материала в период длительного его хранения, что снижает прочность сцепления частиц с вяжущими веществами. Потребуется ввести в помольную установку ПАВ, чтобы экранировать с их помощью возникающую новую поверхность с повышенной энергетической активностью и, возможно, с иным электрозарядом.

Повышение энергетической активности минеральных природных веществ происходит не только в результате принудительного диспергирования при механическом измельчении минералов и горных пород. Исследования, проведенные на побочных продуктах Курской магнитной аномалии, получаемых при разработке полезных ископаемых с больших глубин карьеров (глубже 500 м), показали их повышенную энергетическую и химическую активность. В природных условиях она возникает за счет коррозии пород, особенно кварцесодержащих, образования метаморфизированных структур под влиянием высоких давлений и температур, возникновения дефектов и существенного снижения структурной упорядоченности кристаллов с полным или частичным разрушением кристаллических решеток породообразующих минералов. Отмечен также синтез новых химических соединений в твердой фазе с участием тонкодисперсного кварца с корродированной поверхностью в толще коры выветривания.